Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(48): 18214-18219, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013480

RESUMO

Rechargeable batteries employing ammonium (NH4+) ions have attracted widespread interest owing to the abundant resources, eco-friendliness, and sustainability of NH4+ ions. Herein, an organic-inorganic hybrid is applied to organic NH4+ ion batteries. A poly (3,4-ethylene dioxythiophene) (PEDOT)-intercalated vanadium oxide nanowire (noted as VO-P-x) is applied for organic NH4+ ion storage. VO-P-x with the optimal content of PEDOT showed an interlayer spacing (d-spacing) expanded to 1.82 nm, exhibiting an ultrahigh initial coulombic efficiency of 91% and a reversible capacity of 163 mA h g-1. A significant improvement in NH4+ ion storage was achieved due to the large interlayer spacing and conductive polymer PEDOT. Combining ex situ X-ray photoelectron spectroscopy (XPS) and multi-sweep cyclic voltammetry tests, the NH4+ ion storage mechanism of VO-P-x was clearly revealed. This study provides a new strategy for designing high-performance organic ammonium batteries.

2.
Angew Chem Int Ed Engl ; 61(27): e202204351, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470508

RESUMO

Nonmetallic ammonium (NH4 + ) ion batteries are promising candidates for large-scale energy storage systems, which have the merit of low molar mass, sustainability, non-toxicity and non-dendrite. Herein, for the first time, we introduce the novel organic ammonium ion batteries (OAIBs). Significantly, a manganese-based Prussian white analogue (noted as MnHCF) as cathode exhibits a reversible capacity of 104 mAh g-1 with 98 % retention over 100 cycles. We further demonstrate the electrochemical performance of the NH4 + ion full cell, which delivers a reversible capacity of 45 mAh g-1 with a broad electrochemical window. Combining ex situ XPS, ex situ XRD results and electrochemical properties, the NH4 + ion storage mechanism of MnHCF in a non-aqueous electrolyte is clearly revealed. This work verifies the feasibility of employing NH4 + ions as charge carriers in organic energy storage systems and provides new insights for designing organic nonmetallic ion batteries with broad electrochemical windows and high energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...