Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 251: 117104, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142642

RESUMO

Low-molecular-weight sodium alginate (LMWSA) has been reported to possess unique physicochemical properties and bioactivities. There is little information available about degradation of sodium alginate by ozonation. Effect of ozonation on molecular weight, molecular weight distribution, color change, M/G ratio, and chemical structure of sodium alginate was investigated. The molecular weight of sodium alginate decreased from 972.3 to 76.7 kDa in the 80-min period of ozonation at 25 °C. Two different degradation-rate constants were calculated. Molecular weight distribution of the LMWSA changed appreciably. Ozonation cannot lead to color change of LMWSA. The M/G ratio of LMWSA was not altered significantly, compared with that of the original alginate. The FT-IR and 13C NMR spectra indicated the chemical structure of LMWSA obtained by ozonation was not altered appreciably. New insight into the ozonation of alginate will be promisingly opened up. Ozonation of sodium alginate can be a alternative for production of LMWSA.

2.
Sci Total Environ ; 400(1-3): 173-211, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18707754

RESUMO

Mercury (Hg) contamination in tundra region has raised substantial concerns, especially since the first report of atmospheric mercury depletion events (AMDEs) in the Polar Regions. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. This has generated a unique opportunity to survey the whole Arctic in respect to Hg issue and to find out new discoveries. However, there are still considerable knowledge gaps and debates on the fate of Hg in the Arctic and Antarctica, especially regarding the importance and significance of AMDEs vs. net Hg loadings and other processes that burden Hg in the Arctic. Some studies argued that climate warming since the last century has exerted profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity which increased in sedimentary Hg, whereas some others pointed out the importance of the formation and postdeposition crystallographic history of the snow and ice crystals in determining the fate and concentration of mercury in the cryosphere in addition to AMDEs. Is mercury re-emitted back to the atmosphere after AMDEs? Is Hg methylation effective in the Arctic tundra? Where the sources of MeHg are? What is its fate? Is this stimulated by human made? This paper presents a critical review about the fate of Hg in the Arctic tundra, such as pathways and process of Hg delivery into the Arctic ecosystem; Hg concentrations in freshwater and marine ecosystems; Hg concentrations in terrestrial biota; trophic transfer of Hg and bioaccumulation of Hg through food chain. This critical review of mercury fates and contamination in the Arctic tundra ecosystem is assessing the impacts and potential risks of Hg contamination on the health of Arctic people and the global northern environment by highlighting and "perspectiving" the various mercury processes and concentrations found in the Arctic tundra.


Assuntos
Ecossistema , Monitoramento Ambiental , Poluição Ambiental/análise , Mercúrio/análise , Animais , Regiões Árticas , Cadeia Alimentar , Sedimentos Geológicos/química , Humanos , Mercúrio/química , Mercúrio/toxicidade , Metilação , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/toxicidade , Medição de Risco , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...