Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
ASAIO J ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768482

RESUMO

Thrombotic and bleeding events are the most common hematologic complications in patients with mechanically assisted circulation and are closely related to device-induced platelet dysfunction. In this study, we sought to link computational fluid dynamics (CFD) modeling of blood pumps with device-induced platelet defects. Fresh human blood was circulated in circulatory loops with four pumps (CentriMag, HVAD, HeartMate II, and CH-VAD) operated under a total of six clinically representative conditions. Blood samples were collected and analyzed for glycoprotein (GP) IIb/IIIa activation and receptor shedding of GPIbα and GPVI. In parallel, CFD modeling was performed to characterize the blood flow in these pumps. Numerical indices of platelet defects were derived from CFD modeling incorporating previously derived power-law models under constant shear conditions. Numerical results were correlated with experimental results by regression analysis. The results suggested that a scalar shear stress of less than 75 Pa may have limited contribution to platelet damage. The platelet defect indices predicted by the CFD power-law models after excluding shear stress <75 Pa correlated excellently with experimentally measured indices. Although numerical prediction based on the power-law model cannot directly reproduce the experimental data. The power-law model has proven its effectiveness, especially for quantitative comparisons.

2.
J Colloid Interface Sci ; 669: 740-753, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38739966

RESUMO

Biochar is regarded as a promising lithium-ion batteries anode material, owing to its high cost-effectiveness. However, the poor specific capacity and cycling stability have limited its practical applications. A straightforward and cost-efficient solvothermal method is presented for synthesizing Mn3O4/biochar composites in this study. By adjusting solvothermal temperatures, Mn3O4 with different morphology is prepared and anchored on the biochar surface (MKAC-T) to improve the electrochemical performance. Due to the morphological effect of nanospherical Mn3O4 on the biochar surface, the MKAC-180 anode material demonstrates outstanding reversible capacity (992.5 mAh/g at 0.2 A/g), significant initial coulombic efficiency (61.1 %), stable cycling life (605.3 mAh/g at 1.0 A/g after 1000 cycles), and excellent rate performance (385.8 mAh/g at 1.6 A/g). Moreover, electro-kinetic analysis and ex-situ physicochemical characterizations are employed to illustrate the charge storage mechanisms of MKAC-180 anode. This study provides valuable insights into the "structure-activity relationship" between Mn3O4 microstructure and electrochemical performance for the Mn3O4/biochar composites, illuminating the industrial utilization of biomass carbon anode materials.

3.
Huan Jing Ke Xue ; 45(5): 2640-2650, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629528

RESUMO

DOM is the largest reservoir of organic carbon in the world, and it plays a crucial role in the biogeochemical cycles of natural water bodies. A river is a transition area connecting source water and receiving water that controls the DOM exchange between them. Therefore, in this study, ultraviolet visible spectroscopy (UV-vis) and three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) were used to analyze the spectral characteristics and sources of dissolved organic matter in the Fuhe River, Xiaobai River, Baigouyin River, and Puhe River of Baiyangdian. The results showed that a245 and a355 in the Fuhe River and Xiaobai River were significantly higher than those in the Baigouyin River and Puhe River. E2/E3 showed that the DOM relative molecular mass of the inflow river water body was Puhe River > Baigouyin River > Fuhe River > Xiaobai River. Three components, tyrosine-like (C1), terrigenous humus (C2), and tryptophan-like (C3), were determined using three-dimensional fluorescence through PARAFAC. There was no difference among the fluorescence components (P>0.05), but there were differences among the C2 and C3 components (P<0.05). The proportion of easily degradable protein-like components (C1+C3) was higher than that of humus-like components (C2). The autogeny index BIX was greater than 1, and the humification index HIX was less than 4, indicating that the autogeny characteristics of the river bodies were obvious, and the humification degree was weak. The FI index was the highest (1.96±0.25), and the HIX index was the lowest (0.46±0.08), and the self-generated source characteristics gradually strengthened along the direction of the river entering the lake, indicating that the water body of the Fuhe River showed higher endogenous and autogenic characteristics. Based on the correlation analysis of fluorescence components and characteristic parameters of DOM, the correlations between the Fuhe River and Xiaobaihe River and between the Baigouyin River and Puhe River bodies were similar. The correlation between fluorescence components of DOM and water quality parameters of each lake was significantly different, and it was strongly correlated with nitrogen and phosphorus in water. According to multiple linear regression analysis, there was no significant difference among C1 components, but there was a significant difference between C2 and C3 components. In summary, the carbon cycle process of Baiyangdian Lake was further understood through the study on the DOM spectral characteristics and sources of the inflow river waters in the summer flood season.

4.
ASAIO J ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38446873

RESUMO

Recently there has been increased use of mechanical circulatory support in pediatric patients as a bridge to cardiopulmonary recovery or transplantation. However, there are few devices that are optimized and approved for use in pediatric patients. We designed and prototyped a novel integrated pediatric pump lung (PPL) that underwent 30 day in-vivo testing in seven juvenile Dorset Hybrid sheep. Devices were implanted in a right atrial to pulmonary artery configuration. Six of seven sheep survived with a device functioning for 25-35 days. The device flow rate was maintained at 2.08 ± 0.34 to 2.54 ± 0.16 L/min with oxygen transfer of 109.8 ± 24.8 to 151.2 ± 26.2 ml/min over the study duration. Aside from a postoperative drop in hematocrit, all hematologic and blood chemistry test values returned to normal ranges after 1-2 weeks postoperatively. Similarly, lactate dehydrogenase increased postoperatively and returned to baseline. In two sheep, there were early device failures due to oxygenator thrombosis on postoperative days zero and five; they then had oxygenator exchanges with subsequent devices performing stably for 30 days. This study demonstrated that the integrated PPL device exhibited stable performance and acceptable biocompatibility in a 30 day ovine model.

5.
Cancer Cell Int ; 24(1): 92, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431620

RESUMO

BACKGROUND: Cholangiocarcinoma represents a malignant neoplasm originating from the hepatobiliary tree, with a subset of tumors developing inside the liver. Intrahepatic cholangiocarcinomas (ICC) commonly exhibit an asymptomatic presentation, rendering both diagnosis and treatment challenging. Cuproptosis, an emerging regulated cell death pathway induced by copper ions, has garnered attention recently. As cancer cells show altered copper metabolism and comparatively higher copper needs, cuproptosis may play a role in the development of ICC. However, studies investigating this possibility are currently lacking. METHODS: Single-cell and bulk RNA sequence data were analyzed, and correlations were established between the expression of cuproptosis-related molecules and ICC patient survival. Genes with predicting survival were used to create a CUPT score using Cox and LASSO regression and tumor mutation burden (TMB) analysis. The CIBERSORT software was employed to characterize immune cell infiltration within the tumors. Furthermore, immune infiltration prediction, biological function enrichment, and drug sensitivity analyses were conducted to explore the potential implications of the cuproptosis-related signature. The effects of silencing solute carrier family 39 member 4 gene (SLC39A4) expression using siRNA were investigated using assays measuring cell proliferation, colony formation, and cell migration. Key genes of cuproptosis were detected by western blotting. RESULTS: The developed CUPT score divided patients into high and low CUPT score groups. Those with a low score had significantly better prognosis and longer survival. In contrast, high CUPT scores were associated with worse clinical outcomes and significantly higher TMB. Comparisons of the two groups also indicated differences in the immune infiltrate present in the tumors. Finally, we were able to identify 95 drugs potentially affecting the cuproptosis pathway. Some of these might be effective in the treatment of ICC. The in vitro experiments revealed that suppressing the expression of SLC39A4 in ICC cell lines resulted in reduced cell proliferation, colony formation, and cell migration. It also led to an increase in cell death and the upregulation of key genes associated with cuproptosis, namely ferredoxin 1 (FDX1) and dihydrolipoyl transacetylase (DLAT). These findings strongly suggest that this cuproptosis-associated molecule may play a pivotal role in the development and metastasis of ICC. CONCLUSIONS: Changes in the expression of a cuproptosis-related gene signature can predict the clinical prognosis of ICC with considerable accuracy. This supports the notion that cuproptosis influences the diversity and complexity of the immune microenvironment, mutational landscape, and biological behavior of ICC. Understanding this pathway better may hold promise for the development of innovative strategies in the management of this disease.

6.
IDCases ; 35: e01930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327879

RESUMO

Shigella typically causes gastrointestinal infections, and extra-intestinal manifestations are rare. We report the first known case of pyogenic cervical spondylitis co-infected with Escherichia coli and Shigella flexneri, highlighting the diagnostic challenges and clinical implications. A 53-year-old woman presented with neck pain for one month. MRI revealed C6 and C7 vertebrae abscesses. The patient underwent anterior cervical debridement and bone-graft fusion. Intraoperative pus culture grew Escherichia coli, while metagenomic next-generation sequencing detected both Escherichia coli and Shigella species. Intravenous imipenem 500 mg every 6 h was administered, leading to full wound healing at a 6-month follow-up. This case emphasizes the importance of considering Shigella infection in the differential diagnosis of pyogenic spondylitis and demonstrates the utility of a multi-pronged diagnostic approach.

7.
Heliyon ; 10(4): e25575, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370216

RESUMO

The recovery of valuable metals from waste battery materials and the thermal decomposition of PVC both require significant energy and material consumption. In this study, we propose an innovative strategy that integrates the lithium extraction process from spent LiNi0.85Co0.15Al0.05O2 (S-NCA) with PVC pyrolysis, resulting in a substantial reduction in energy consumption and chemical additive. Various characterization techniques, including SEM, TEM, XRD, and XPS, are employed to investigate the mechanism of gas-solid lithium extraction and provide valuable insights into the migration pathway of lithium from S-NCA to soluble LiCl. The optimal conditions for the process were determined as follows: a temperature of 600 °C, S-NCA/PVC mass ratio of 1:4, and a baking time of 2 h, achieving a lithium extraction efficiency of 94.37 %. The research provides valuable insights for the valorization of PVC thermal decomposition and lithium extraction from NCA, presenting a novel approach for future applications.

8.
Med Sci Monit ; 30: e944193, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380469

RESUMO

The authors have requested retraction due to the identification of errors in the data. Reference: Jiafeng Zhang, Xiaojie Jin, Chuan Zhou, Hui Zhao, Ping He, Yalin Hao, Qiongna Dong. Resveratrol Suppresses Human Nasopharyngeal Carcinoma Cell Growth Via Inhibiting Differentiation Antagonizing Non-Protein Coding RNA (DANCR) Expression. Med Sci Monit, 2020; 26: e923622. DOI: 10.12659/MSM.923622.

9.
Chem Commun (Camb) ; 60(13): 1778-1781, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38252414

RESUMO

Given the rising lithium-ion battery retirement trend, there is a pressing need for a sustainable, cost-effective, versatile, and industrially viable positive active powder reprocessing method. The current treatment methods require significant amounts of acids, reducing agents, and other additives, resulting in increased treatment expenses and detrimental environmental consequences. This paper proposes a synergistic redox strategy, based on thermodynamic calculations of potential self-promoting reactions in mixed LFP/NCM systems, for the recovery of spent LFP and NCM batteries without the need for additional agents in a milder acidic atmosphere. In this cooperative redox strategy, the spontaneous extraction and oxidation of Fe2+ to Fe3+ took place within the acidic solution atmosphere encapsulating LFP. Simultaneously, NCM underwent further reduction, yielding Ni2+ and Fe2+, thereby enabling the proficient dissolution and segregation of lithium and transition metal ions. The leaching rate of lithium, nickel, cobalt and manganese was close to 100% when the reaction was carried out at 20 °C for 40 min. The final raw material was reprepared into a battery with a capacity of 168.8 mA h g-1 at 1C, and the cycle retention rate was 76.78% after 300 cycles. Regenerating FPO into LFP cathode material achieves closed-loop recycling of all elements and generates 12% higher profits compared to separate processes. Our method proposes a zero-additive battery recycling process and successfully explains the intrinsic redox process.

11.
Sci Total Environ ; 912: 168821, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016569

RESUMO

Green methods for chelated heavy metals treatment and recovery are essential for coordinated development of resources and environment. Herein, a simple and competent method, titanium salt (TiCl4) coagulation was developed to remove and recycle chelated heavy metals. Our results revealed that this method proved to be effective for metals-citrate [Cu(II), Ni(II), Zn(II) and Cr(VI)], achieving removal efficiencies of 95 %, 92 %, 99 %, and 99 % within 30 min, surpassing direct alkaline precipitation and well-used Fe(III) coagulation. Whereafter, the copper-containing sludge was successfully transformed into copper-doped titanium dioxide (TiO2) photocatalysts by facile calcination. Through comprehensively investigating physicochemical properties by a suite of characterization techniques, we confirmed that doping of Cu induced bandgap narrowing, high specific surface area as well as the formation of oxygen vacancy. Accordingly, the recycling photocatalysts showed remarkable enhanced photocatalytic performance than the pristine TiO2, achieving improvement in the degradation efficiency of 82 %, 61 % and 67 % for carbamazepine(CBZ), bisphenol A (BPA) and methyl orange (MO). In addition, both radical (OH and O2-) and non-radical (1O2 and h+) pathways synergistically contributed to the removal of organic pollutants during photocatalysis. Ultimately, based on economic feasibility assessment and life cycle assessment (LCA), the copper-containing titanium coagulation sludge reuse for photocatalyst could bring lower carbon emissions, reduced environmental risks and higher economic benefits. The elucidation of this study provides new insights into the removal and recycle of chelated heavy metals from wastewater by using an environment-friendly and cost-effective method.

12.
Artif Organs ; 48(2): 130-140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37860931

RESUMO

BACKGROUND: Although extracorporeal membrane oxygenation (ECMO) has been used to provide temporary support for pediatric patients suffering severe respiratory or cardiac failure since 1970, ECMO systems specifically designed for pediatric patients, particularly for long-term use, remain an unmet clinical need. We sought to develop a new pediatric ECMO system, that is, pediatric pump-lung (PPL), consisting of a unique cylinder oxygenator with an outside-in radial flow path and a centrifugal pump. METHODS: Computational fluid dynamics was used to analyze the blood fluid field for optimized biocompatible and gas exchange performances in terms of flow characteristics, hemolysis, and gas transfer efficiency. Ovine blood was used for in vitro hemolysis and gas transfer testing. RESULTS: Both the computational and experimental data showed that the pressure drop through the PPL's oxygenator is significantly low, even at a flow rate of more than 3.5 L/min. The PPL showed better hemolysis performance than a commercial ECMO circuit consisting of the Quadrox-iD pediatric oxygenator and the Rotaflow pump at a 3.5 L/min flow rate and 250 mm Hg afterload pressure. The oxygen transfer rate of the PPL can reach over 200 mL/min at a flow rate of 3.5 L/min. CONCLUSIONS: The PPL has the potential to provide adequate blood pumping and excellent respiratory support with minimal risk of hemolysis for a wide range of pediatric patients.


Assuntos
Oxigenação por Membrana Extracorpórea , Hemólise , Humanos , Criança , Animais , Ovinos , Hidrodinâmica , Oxigenação por Membrana Extracorpórea/efeitos adversos , Pulmão , Oxigenadores , Desenho de Equipamento
13.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067804

RESUMO

For space-based gravitational wave detection, a laser interferometric measurement system composed of a three-spacecraft formation offers the most rewarding bandwidth of astrophysical sources. There are no oscillators available that are stable enough so that each spacecraft could use its own reference frequency. The conversion between reference frequencies and their distribution between all spacecrafts for the synchronization of the different metrology systems is the job of the inter-spacecraft frequency setting strategy, which is important for continuously acquiring scientific data and suppressing measurement noise. We propose a hierarchical optimization algorithm to solve the frequency setting strategy. The optimization objectives are minimum total readout displacement noise and maximum beat-note frequency feasible range. Multiple feasible parameter combinations were obtained for the Taiji program. These optimized parameters include lower and upper bounds of the beat note, sampling frequency, pilot tone signal frequency, ultrastable clock frequencies, and modulation depth. Among the 20 Pareto optimal solutions, the minimum total readout displacement noise was 4.12 pm/Hz, and the maximum feasible beat-note frequency range was 23 MHz. By adjusting the upper bound of beat-note frequency and laser power transmitted by the telescope, we explored the effects of these parameters on the minimum total readout displacement noise and optimal local laser power in greater depth. Our results may serve as a reference for the optimal design of laser interferometry system instrument parameters and may ultimately improve the detection performance and continuous detection time of the Taiji program.

14.
Ther Adv Respir Dis ; 17: 17534666231208632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941347

RESUMO

BACKGROUND: The differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE) presents a clinical challenge. In recent years, the use of artificial intelligence (AI) machine learning models for disease diagnosis has increased. OBJECTIVE: This study aimed to develop and validate a diagnostic model for early differentiation between MPE and BPE based on routine laboratory data. DESIGN: This was a retrospective observational cohort study. METHODS: A total of 2352 newly diagnosed patients with pleural effusion (PE), between January 2008 and March 2021, were eventually enrolled. Among them, 1435, 466, and 451 participants were randomly assigned to the training, validation, and testing cohorts in a ratio of 3:1:1. Clinical parameters, including age, sex, and laboratory parameters of PE patients, were abstracted for analysis. Based on 81 candidate laboratory variables, five machine learning models, namely extreme gradient boosting (XGBoost) model, logistic regression (LR) model, random forest (RF) model, support vector machine (SVM) model, and multilayer perceptron (MLP) model were developed. Their respective diagnostic performances for MPE were evaluated by receiver operating characteristic (ROC) curves. RESULTS: Among the five models, the XGBoost model exhibited the best diagnostic performance for MPE (area under the curve (AUC): 0.903, 0.918, and 0.886 in the training, validation, and testing cohorts, respectively). Additionally, the XGBoost model outperformed carcinoembryonic antigen (CEA) levels in pleural fluid (PF), serum, and the PF/serum ratio (AUC: 0.726, 0.699, and 0.692 in the training cohort; 0.763, 0.695, and 0.731 in the validation cohort; and 0.722, 0.729, and 0.693 in the testing cohort, respectively). Furthermore, compared with CEA, the XGBoost model demonstrated greater diagnostic power and sensitivity in diagnosing lung cancer-induced MPE. CONCLUSION: The development of a machine learning model utilizing routine laboratory biomarkers significantly enhances the diagnostic capability for distinguishing between MPE and BPE. The XGBoost model emerges as a valuable tool for the diagnosis of MPE.


Assuntos
Derrame Pleural Maligno , Derrame Pleural , Humanos , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/etiologia , Antígeno Carcinoembrionário/análise , Biomarcadores Tumorais , Inteligência Artificial , Diagnóstico Diferencial , Estudos de Coortes , Derrame Pleural/diagnóstico , Aprendizado de Máquina
15.
Appl Opt ; 62(16): 4370-4380, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706930

RESUMO

For space-based gravitational wave (GW) detection, the continuity of detection data acquisition is crucial to the inversion of wave sources and the realization of scientific goals. To control the inter-spacecraft beat-note frequency in an appropriate range for continuous gravitational wave detection and to reduce the upper bound of the beat-note frequency for improving the detection capability, a two-stage optimization algorithm is proposed to solve the offset frequency setting strategy in the Taiji program. The optimization objectives are the maximum offset frequency duration and minimum upper bound of the beat-note frequency. Considering all feasible phase-locked schemes, Doppler frequency shift, and the bandwidth of the phasemeter, a series of offset frequency setting strategies satisfying the conditions was obtained. The solution results show that the upper bound can be reduced to 16 MHz and, in this case, the offset frequency changes nine times with a minimum and maximum offset frequency duration of 90 days and 713 days, respectively. If the Doppler frequency shift is constrained, the minimum upper bound can be reduced to 14 MHz. When the minimum duration is increased, the minimum upper bound is increased. These results show that, by varying the offset frequency a limited number of times, the data continuity requirements of the Taiji program can be satisfied, and the phasemeter development difficulty and detection capability can be balanced, and may provide a reference for the phasemeter design, the setting of phase-locking schemes, and inter-spacecraft offset frequency in the Taiji program.

16.
ACS Appl Mater Interfaces ; 15(29): 35684-35691, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435971

RESUMO

Sandwiching polymer interlayers between the electrode and solid electrolyte is considered promising in solving the interfacial issues arising from solid-solid contact in garnet-based solid-state batteries, but drawbacks including low ionic conductivity, inferior Li+ transference number, and unsatisfying mechanical property of the polymer hindered the practical application of such strategy. To solve the mentioned shortcomings of the polymer interlayer simultaneously, we introduce the ferroelectric material, BaTi2O5 (BT) nanorods, into the polymer matrix in this work. By taking full advantage of the plasticization effect and intrinsic spontaneous polarization of the introduced ferroelectric, the polymer's ionic conductivity and Li+ transference number have been significantly enhanced. The built-in electric field BT introduced also benefits the modulation of CEI components formed on the cathode particles, further enhancing the battery performance by decreasing cathode degradation. Besides, the BT nanorods' particular high aspect ratio also helps increase the mechanical property of the obtained polymer film, making it more resistant to lithium dendrite growth across the interface. Benefitting from the merits mentioned above, the assembled lithium symmetric cells using garnet SE with the BT-modified polymer interlayer exhibit stable cycling performance (no short circuit after 1000 h under RT) with low polarization voltage. The full battery employing LiFePO4 as a cathode also presents superior capacity retentions (94.6% after 200 cycles at 0.1 C and 93.4% after 400 cycles at 0.2 C). This work highlights the importance of ferroelectric materials with specific morphology in enhancing the electrochemical performance of polymer-based electrolytes, promoting the practical application of solid-state batteries.

17.
Environ Res ; 232: 116424, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327840

RESUMO

The thermal stratification of reservoir affects water quality, and water quality evolution is largely driven by microorganisms. However, few studies have been conducted on the response of abundant taxa (AT) and rare taxa (RT) to thermal stratification evolution in reservoirs. Here, using high-throughput absolute quantitative techniques, we examined the classification, phylogenetic diversity patterns, and assembly mechanisms of different subcommunities during different periods and investigated the key environmental factors driving community construction and composition. The results showed that community and phylogenic distances of RT were higher than AT (P < 0.001), and community and phylogenic distances of the different subcommunities were significantly positively correlated with the dissimilarity of environmental factors (P < 0.001). Nitrate (NO3--N) was the main driving factor of AT and RT in the water stratification period, and Mn was the main driving factor in the water mixing period (MP) based on redundancy analysis (RDA) and random forest analysis (RF). The interpretation rate of key environmental factors based on the selected indicator species in RT by RF was higher than that of AT, and Xylophilus (10.5%) and Prosthecobacter (0.1%) had the highest average absolute abundance in AT and RT during the water stable stratification period (SSP), whereas Unassigned had the highest abundance during the MP and weak stratification period (WSP). The network of RT and environmental factors was more stable than that of AT, and stratification made the network more complex. NO3--N was the main node of the network during the SSP, and manganese (Mn) was the main node during the MP. Dispersal limitation dominated community aggregation, the proportion of AT was higher than that of RT. Structural Equation Model (SEM) showed that NO3--N and temperature (T) had the highest direct and total effects on ß-diversity of AT and RT for the SP and MP, respectively.


Assuntos
Microbiologia da Água , Qualidade da Água , Filogenia , Bactérias/genética , Temperatura , China
18.
PeerJ ; 11: e15284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123010

RESUMO

Background: Bladder urothelial carcinoma (BLCA) is a malignant tumor of the urinary system. This study aimed to explore the potential role of lymph node metastasis-associated aberrant methylation differentially expressed genes (DEGs) in BLCA. Methods: CHAMP and limma packages were used to identify lymph node metastasis-associated aberrant methylation DEGs. Univariate Cox analysis and Lasso analysis were performed to identify the signature genes, and multivariate Cox analysis was used to construct the risk score. Subsequently, the molecular characteristics of the signature genes and the relationship between risk score and prognosis, clinical characteristics and immune cell infiltration were analyzed. The signature gene AKAP7 was selected for functional verification. Results: A novel risk score model was constructed based on 12 signature genes. The risk score had a good ability to predict overall survival (OS). The nomogram constructed based on age, N stage and risk score had a higher value in predicting the prognosis of patients. It was also found that stromal activation in TIME may inhibit the antitumor effects of immune cells. Functional enrichment analysis revealed that ECM receptor interaction and focal adhesion were two important pathways involved in the regulation of BLCA. Immunohistochemistry showed that AKAP7 may be associated with the occurrence, clinical stages and grades, and lymph node metastasis of BLCA. In vitro cell experiments showed that the migration and invasion ability of EJ cells was significantly inhibited after AKAP7 overexpression, while the migration and invasion ability of T24 cells was significantly promoted after AKAP7 knockdown. Conclusion: The risk score model based on lymph node metastasis-associated aberrant methylation DEGs has a good ability to predict OS and is an independent prognostic factor for BLCA. It was also found that stromal activation in TIME may inhibit the antitumor effects of immune cells. This implicates aberrant methylation modifications as an important factor contributing to the heterogeneity and complexity of individual tumor microenvironments. Functional enrichment analysis revealed that ECM receptor interaction and focal adhesion were two important pathways involved in the regulation of BLCA, which contributed to the exploration of the pathological mechanism of BLCA. In addition, immunohistochemistry showed that AKAP7 may be associated with the occurrence, progression and lymph node metastasis of BLCA. In vitro cell experiments showed that AKAP7 could also inhibit the migration and invasion of cancer cells.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Metilação , Metástase Linfática/genética , Bexiga Urinária , Prognóstico , Microambiente Tumoral
19.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2669-2678, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103624

RESUMO

PURPOSE: To investigate color vision deficiency and the value of Hardy-Rand-Rittler (HRR) color plates in monitoring dysthyroid optic neuropathy (DON) to improve the diagnosis of DON. METHODS: The participants were divided into DON and non-DON (mild and moderate-to-severe) groups. All the subjects underwent HRR color examination and comprehensive ophthalmic examinations. The random forest and decision tree models based on the HRR score were constructed by R software. The ROC curve and accuracy of different models in diagnosing DON were calculated and compared. RESULTS: Thirty DON patients (57 eyes) and sixty non-DON patients (120 eyes) were enrolled. The HRR score was lower in DON patients than in non-DON patients (12.1 ± 6.2 versus 18.7 ± 1.8, p < 0.001). The major color deficiency was red-green deficiency in DON using HRR test. The HRR score, CAS, RNFL, and AP100 were found to be important factors in predicting DON from random forest and selected by decision tree to construct the multifactor model. The sensitivity, specificity, and the area under the curve (AUC) of the HRR score were 86%, 72%, and 0.87, respectively. The HRR score decision tree had a sensitivity, specificity, and AUC of 93%, 57%, and 0.75, respectively, with an accuracy of 82%. The data of the multifactor decision tree were 90%, 89%, and 0.93 for sensitivity, specificity, and AUC, respectively, with an accuracy of 91%. CONCLUSION: The HRR test was valid as screening method for DON. The multifactor decision tree based on the HRR test improved the diagnostic efficacy for DON. An HRR score of less than 12 and red-green deficiency may be characteristic of DON.


Assuntos
Defeitos da Visão Cromática , Visão de Cores , Oftalmopatia de Graves , Doenças do Nervo Óptico , Humanos , Testes de Percepção de Cores/métodos , Defeitos da Visão Cromática/diagnóstico , Curva ROC , Doenças do Nervo Óptico/diagnóstico
20.
Small ; 19(33): e2301437, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086137

RESUMO

Suppressing migrations of intrinsic and extrinsic ions (e.g., Pb2+ , I- , FA+ /MA+ , and Li+ ) in organic-inorganic hybrid perovskites is critical for alleviating the hysteresis and degradation of perovskite solar cells (PSCs). However, various additives reported for that purpose usually interact with one or two types of those ions, not inhibiting multiple-ion migrations simultaneously. Two oligosaccharides (ß-cyclodextrin (ß-CD) and maltotetraose (G4)), containing 14 hydroxyls (-OH) with different spatial distributions, for the suppression of multiple-ion migrations in PSCs is herein employed. Compared to linear arrangement of -OH in G4, annular distribution of -OH around wide and narrow rims of ß-CD can form supramolecular multi-site interactions in a focal manner with various ions, more effectively capturing and immobilizing these migrated ions. With this multiple-ion management strategy, ß-CD-based PSCs exhibit an impressive efficiency of 24.22% with negligible hysteresis and excellent device stability. This work highlights the significances of multi-site interactions and molecular configuration of the additive for inhibiting multi-ion migrations in PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...