Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 16(20): 2688-2697, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27546101

RESUMO

The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought-resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought-resistant species and may benefit future agricultural production.


Assuntos
Hippophae/fisiologia , Proteínas de Plantas/metabolismo , Adaptação Fisiológica , Secas , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Hippophae/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteômica , RNA Mensageiro/genética , Transdução de Sinais , Estresse Fisiológico
2.
Biochem Pharmacol ; 69(6): 883-9, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15748700

RESUMO

Adenosine is an endogenous nucleoside that regulates many physiological processes through the activation of its four receptors: A(1), A(2A), A(2B) and A(3). Previous studies have identified the involvement of A(2) receptors in the inhibitory activity of adenosine analogues on tumor necrosis factor-alpha (TNF-alpha) production by lipopolysaccharide (LPS) activated monocytes, but the relative contributions of A(2A) versus A(2B) receptors have not been determined in human primary monocytes. Nor has the role of A(1) and A(3) been clearly identified in the system. The lack of such information impacts on the selection of adenosine receptor agonists for disease intervention. Using LPS-stimulated human primary monocytes, we found that the adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) or the A(2A) receptor agonist, 4-[2-[[6-amino-9-(N-ethyl-b-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680) produced a concentration-dependent inhibition of TNF-alpha production, with IC(50)s of 58.4nM (32.7-104.5nM, 95% confidence interval) and 49.2nM (22.7-105.9nM, 95% confidence interval), respectively. The selective A(2A) receptor blocker, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylaminso]ethyl)phenol (ZM241385, 30nM), antagonized the effects of NECA and CGS21680 (pK(B) estimates were 8.7+/-0.1 and 8.9+/-0.1, respectively), while the selective A(2B) antagonist, N-(4-cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]-acetamide (MRS1754, 100nM), failed to antagonize the effects of either agonist. Furthermore, neither the A(1) receptor agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) nor the A(3) receptor agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-d-ribofuranuronamide (2-Cl-IB-MECA) showed significant inhibitory activity at concentrations that effectively bind to their respective receptors. We conclude that A(2A) receptor activation is predominantly responsible for the inhibitory effects of adenosine receptor agonists on TNF-alpha production from LPS-stimulated monocytes.


Assuntos
Adenosina/análogos & derivados , Monócitos/metabolismo , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Relação Dose-Resposta a Droga , Humanos , Monócitos/efeitos dos fármacos , Fenetilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA