Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nat Mater ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605196

RESUMO

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

2.
Microorganisms ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543572

RESUMO

Urban forest soil is often disturbed by frequent human activity. Organic mulching is effective for improving soil quality; however, the effects of organic mulching on soil bacterial communities in urban forests are still largely unexplored. This study evaluated how organic mulching changed the urban forest soil bacterial community through an incubation experiment. Four treatments were applied: (1) no organic mulch (CK); (2) wood chips alone (5 g, Mw); (3) wood compost alone (5 g, Mc); and (4) wood chips + wood compost (This mulch was divided into two layers, i.e., the upper layer of wood chips (2.5 g) and the lower layer wood compost (2.5 g, Mw+c).) We found significant differences in the soil physicochemical properties under organic mulching after incubation. Overall, organic mulching can alter soil bacterial community structure. Soil alkali-hydrolyzable nitrogen, soil organic carbon, soil total nitrogen, and carbon-nitrogen ratio were the main factors affecting soil microbial community structures. Soil bacterial groups under organic mulching treatments mainly acted on the C and N cycling of functional pathways in soil. This study suggests that organic mulching could maintain the development of soil bacteria, which establishes a theoretical foundation for enhancing the microbiological environment of urban forest soils.

3.
Adv Mater ; : e2311830, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501495

RESUMO

Colloidal Quantum Dots (CQDs) of mercury telluride (HgTe) hold particular appeal for infrared photodetection due to their widely tunable infrared absorption and good compatibility with silicon electronics. While advances in surface chemistry have led to improved CQD solids, the chemical stability of HgTe material is not fully emphasized. In this study, it is aimed to address this issue and identifies a Se-stabilization strategy based on the surface coating of Se on HgTe CQDs via engineering in the precursor reactivity. The presence of Se-coating enables HgTe CQDs with improved colloidal stability, passivation, and enhanced degree of freedom in doping tuning. This enables the construction of optimized p-i-n HgTe CQD infrared photodetectors with an ultra-low dark current 3.26 × 10-6 A cm⁻2 at -0.4 V and room-temperature specific detectivity of 5.17 × 1011 Jones at wavelength ≈2 um, approximately one order of magnitude improvement compared to that of the control device. The stabilizing effect of Se is well preserved in the thin film state, contributing to much improved device stability. The in-synthesis Se-stabilization strategy highlights the importance of the chemical stability of materials for the construction of semiconductor-grade CQD solids and may have important implications for other high-performance CQD optoelectronic devices.

4.
Adv Mater ; 36(21): e2313811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358302

RESUMO

Solution-processed colloidal quantum dots (CQDs) are promising candidates for broadband photodetectors from visible light to shortwave infrared (SWIR). However, large-size PbS CQDs sensitive to longer SWIR are mainly exposed with nonpolar (100) facets on the surface, which lack robust passivation strategies. Herein, an innovative passivation strategy that employs planar cation, is introduced to enable face-to-face coupling on (100) facets and strengthen halide passivation on (111) facets. The defect density of CQDs film (Eg ≈ 0.74 eV) is reduced from 2.74 × 1015 to 1.04  × 1015 cm-3, coupled with 0.1 eV reduction in the activation energy of defects. The resultant CQDs photodiodes exhibit a low dark current density of 14 nA cm-2 with a high external quantum efficiency (EQE) of 62%, achieving a linear dynamic range of 98 dB, a -3dB bandwidth of 103 kHz and a detectivity of 4.7 × 1011 Jones. The comprehensive performance of the CQDs photodiodes outperforms previously reported CQDs photodiodes operating at >1.6 µm. By monolithically integrated with thin-film transistor (TFT) readout circuit, the broadband CQDs imager covering 0.35-1.8 µm realizes the functions including silicon wafer perspectivity and material discrimination, showing its potential for wide range of applications.

5.
ACS Appl Mater Interfaces ; 16(7): 9030-9038, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321610

RESUMO

Low-dimensional metal halides with broadband emissions are expected to serve as downconversion luminescent materials for solid-state lighting (SSL). However, efficiently generating full-spectrum white-light emission with a high color-rendering index (CRI) in single-phase emitters remains a challenge. Here, we report a novel zero-dimensional (0D) hybrid mixed-metal halide (TPA)2CuAgI4 (TPA = tetrapropylammonium), in which individual [CuAgI4]2- dimers are completely isolated and surrounded by the organic cations TPA+. Cu+ and Ag+ share the same crystallographic site in [CuAgI4]2- dimers with the same statistical probability. Upon photoexcitation, single crystals exhibit a full-spectrum white-light emission with a full width at half-maximum (fwhm) of up to 314 nm and a high quantum efficiency of 46.8%. Detailed photophysical studies and theoretical calculations reveal that the ultra-broadband emission of (TPA)2CuAgI4 originates from the radiative recombination of red-, green-, and blue-emitting self-trapped excitons in [CuAgI4]2- dimers. In addition, (TPA)2CuAgI4 nanocrystals were successfully synthesized and exhibited optical properties similar to those of single-crystal counterparts. Finally, a prototype ultraviolet (UV)-pumped white-light-emitting diode (WLED) and a composite thin film employing this new white-light emitter produces a well-distributed full-spectrum white light with a high CRI of 91.4 and a warm correlated color temperature (CCT) of 4135 K, indicating the potential application of this white-light emitter in SSL. These results provide a new perspective for designing superior single-phase white-light emitters.

6.
Small Methods ; : e2301557, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381091

RESUMO

HgTe nanocrystals (NCs) possess advantages including tunable infrared absorption spectra, solution processability, and low fabrication costs, offering new avenues for the advancement of next-generation infrared detectors. In spite of great synthetic advances, it remains essential to achieve customized synthesis of HgTe NCs in terms of industrial applications. Herein, by taking advantage of a high critical nucleation concentration of HgTe NCs, a continuous-dropwise (CD) synthetic approach that features the addition of the anion precursors in a feasible drop-by-drop fashion is demonstrated. The slow reaction dynamics enable size-customized synthesis of HgTe NCs with sharp band tails and wide absorption range fully covering the short- and mid-infrared regions. More importantly, the intrinsic advantages of CD process ensure high-uniformity and scale-up synthesis from batch to batch without compromising the excitonic features. The resultant HgTe nanocrystal photodetectors show a high room-temperature detectivity of 8.1 × 1011 Jones at 1.7 µm cutoff absorption edge. This CD approach verifies a robust method for controlled synthesis of HgTe NCs and might have important implications for scale-up synthesis of other nanocrystal materials.

7.
ACS Appl Mater Interfaces ; 15(50): 58573-58582, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059485

RESUMO

Lead sulfide (PbS) colloidal quantum dots (CQDs) for photodetectors (PDs) have garnered great attention due to their potential use as low-cost, high-performance, and large-area infrared focal plane arrays. The prevailing device architecture employed for PbS CQD PDs is the p-i-n structure, where PbS CQD films treated with thiol molecules, such as 1,2-ethanedithiol (EDT), are widely used as p-type layers due to their favorable band alignment. However, PbS-EDT films face a critical challenge associated with low film quality, resulting in many defects that curtail the device performance. Herein, a controlled oxidization process is developed for better surface passivation of the PbS-EDT transport layer. The dark current density (Jd) of PbS CQD PDs based on optimized PbS-EDT layer shows a dramatic decrease by nearly 2 orders of magnitude. The increase of carrier lifetime and suppression of carrier recombination via controlled oxidation in PbS-EDT CQDs were confirmed by transient absorption spectra and electrochemical impedance spectra. The device based on the optimized PbS-EDT hole transport layer (HTL) exhibits a specific detectivity (D*) that is 3.4 times higher compared to the control device. Finally, the CQD PD employing oxidization PbS-EDT CQDs is integrated with a thin film transistor (TFT) readout circuit, which successfully accomplishes material discrimination imaging, material occlusion imaging, and smoke penetration imaging. The controlled oxidization strategy verifies the significance of surface management of CQD solids and is expected to help advance infrared optoelectronic applications based on CQDs.

9.
Chin J Nat Med ; 21(10): 745-758, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37879793

RESUMO

Depression is a mental disorder with high morbidity, disability and relapse rates. Ginkgo biloba extract (GBE), a traditional Chinese medicine, has a long history of clinical application in the treatment of cerebral and mental disorders, but the key mechanism remains incompletely understood. Here we showed that GEB exerted anti-depressant effect in mice through regulating gut microbial metabolism. GBE protected against unpredictable mild stress (UMS)-induced despair, anxiety-like and social avoidance behavior in mice without sufficient brain distribution. Fecal microbiome transplantation transmitted, while antibiotic cocktail abrogated the protective effect of GBE. Spatiotemporal bacterial profiling and metabolomics assay revealed a potential involvement of Parasutterella excrementihominis and the bile acid metabolite ursodeoxycholic acid (UDCA) in the effect of GBE. UDCA administration induced depression-like behavior in mice. Together, these findings suggest that GBE acts on gut microbiome-modulated bile acid metabolism to alleviate stress-induced depression.


Assuntos
Depressão , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Depressão/tratamento farmacológico , Extratos Vegetais , Ginkgo biloba
10.
Nat Commun ; 14(1): 5352, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660051

RESUMO

Combining information from multispectral images into a fused image is informative and beneficial for human or machine perception. Currently, multiple photodetectors with different response bands are used, which require complicated algorithms and systems to solve the pixel and position mismatch problem. An ideal solution would be pixel-level multispectral image fusion, which involves multispectral image using the same photodetector and circumventing the mismatch problem. Here we presented the potential of pixel-level multispectral image fusion utilizing colloidal quantum dots photodiode array, with a broadband response range from X-ray to near infrared and excellent tolerance for bending and X-ray irradiation. The colloidal quantum dots photodiode array showed a specific detectivity exceeding 1012 Jones in visible and near infrared range and a favorable volume sensitivity of approximately 2 × 105 µC Gy-1 cm-3 for X-ray irradiation. To showcase the advantages of pixel-level multispectral image fusion, we imaged a capsule enfolding an iron wire and soft plastic, successfully revealing internal information through an X-ray to near infrared fused image.

11.
Eur J Pharmacol ; 956: 175970, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549727

RESUMO

As a common progressive neurodegenerative disorder, the satisfied therapies for Parkinson's disease (PD) are still unavailable. As a natural acetylcholinesterase inhibitor, the neuroprotective characteristic of Huperzine A (HupA) was supported by previous studies. However, questions remain on whether HupA injection (HAI, a main preparation of HupA) intervention conduces to PD treatment and if so, the potential molecular mechanisms. In this study, the efficacies of HAI treatment on PD-like pathological phenotypes were evaluated in a MPTP-induced PD murine model. The network pharmacology, transcriptome sequencing and experimental verification were integrated to comprehensively reveal the primary molecular mechanisms. Therapeutically, HAI intervention significantly improved the impaired locomotor behaviors as well as learning and memory abilities, and prevented the degeneration of dopaminergic neurons of PD mice. The network pharmacology analysis combined with experimental results showed that HAI treatment could effectively restore the disordered transcriptional levels of inflammatory factors and apoptosis related genes in the SNpc and striatum tissues of PD mice. Transcriptome sequencing results found that inflammation and oxidative phosphorylation served as significant functional mechanisms involved in HAI administration. The experimental verification indicated that HAI treatment effectively regulated the abnormal transcription levels of inflammation and oxidative phosphorylation related hub genes in the hippocampal samples of PD mice. In addition, molecular docking suggested strong affinity between HupA and the above core targets. Overall, this work displayed the reliable therapeutic effects of HAI on ameliorating the pathological symptoms of PD mice via modulating multiple pathways. The current findings were expected to provide a potential anti-PD agent.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Modelos Animais de Doenças , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Neurônios Dopaminérgicos , Cognição , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
12.
Nano Lett ; 23(14): 6489-6496, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433227

RESUMO

Solution-processed colloidal quantum dot (CQD) photodiodes are compatible for monolithic integration with silicon-based readout circuitry, enabling ultrahigh resolution and ultralow cost infrared imagers. However, top-illuminated CQD photodiodes for longer infrared imaging suffer from mismatched energy band alignment between narrow-bandgap CQDs and the electron transport layer. In this work, we designed a new top-illuminated structure by replacing the sputtered ZnO layer with a SnO2 layer by atomic layer deposition. Benefiting from matched energy band alignment and improved heterogeneous interface, our top-illuminated CQD photodiodes achieve a broad-band response up to 1650 nm. At 220 K, these SnO2-based devices exhibit an ultralow dark current density of 3.5 nA cm-2 at -10 mV, reaching the noise limit for passive night vision. The detectivity is 4.1 × 1012 Jones at 1530 nm. These SnO2-based devices also demonstrate exceptional operation stability. By integrating with silicon-based readout circuitry, our CQD imager realizes water/oil discrimination and see-through smoke imaging.

13.
ACS Nano ; 17(14): 13997-14004, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450660

RESUMO

We study the early time carrier drift dynamics in CsPbI3 nanocrystal thin films with a sub 25 ps time resolution. Prior to trapping, carriers exhibit band-like transport characteristics, which is similar to those of traditional semiconductor solar absorbers including Si and GaAs due to optical phonon and carrier scattering at high temperatures. In contrast to the popular polaron scattering mechanism, the CsPbI3 nanocrystal thin film demonstrates the strongest optical phonon scattering mechanism among other inorganic-organic hybrid perovskites, Si, and GaAs. This ultrafast dynamics study establishes a foundation for understanding the fundamental carrier drift properties that drive perovskite nanocrystal optoelectronics.

14.
Front Optoelectron ; 16(1): 15, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318647

RESUMO

Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future.

15.
Sci Bull (Beijing) ; 68(7): 698-705, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931915

RESUMO

Epitaxially grown photodiodes are the foundation of infrared photodetection technology; however, their rigid structure and limited area scaling limit their use in advanced applications. Colloidal-quantum-dot (CQD) infrared photodiodes have increased active areas through solution processing, and are thus potential candidates for large-area flexible photodetection, but these large-area photodiodes have disadvantages such as large dark current density, poor homogeneity, and poor stability. Therefore, this study established a fabrication strategy for large-area flexible CQD photodiodes that involves introducing polyimide to CQD ink to improve CQD passivation, monodisperse ink persistence, and film morphology. The resulting CQD photodiodes exhibited reduced dark current density and improved homogeneity and work stability. Furthermore, the as-prepared photodiodes exhibited a detectivity (D*) of greater than 1013 Jones, which was higher than other reported CQD photodetectors. The CQD photodiodes developed in this study can be used for wearable photoplethysmogram (PPG) signal measurement under ambient light at reduced cost and power consumption.

16.
ACS Appl Mater Interfaces ; 15(9): 12061-12069, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848237

RESUMO

PbS colloidal quantum dot (CQD) infrared photodiodes have attracted wide attention due to the prospect of developing cost-effective infrared imaging technology. Presently, ZnO films are widely used as the electron transport layer (ETL) of PbS CQDs infrared photodiodes. However, ZnO-based devices still suffer from the problems of large dark current and low repeatability, which are caused by the low crystallinity and sensitive surface of ZnO films. Here, we effectively optimized the device performance of PbS CQDs infrared photodiode via diminishing the influence of adsorbed H2O at the ZnO/PbS CQDs interface. The polar (002) ZnO crystal plane showed much higher adsorption energy of H2O molecules compared with other nonpolar planes, which could reduce the interface defects induced by detrimentally adsorbed H2O. Based on the sputtering method, we obtained the [002]-oriented and high-crystallinity ZnO ETL and effectively suppressed the adsorption of detrimental H2O molecules. The prepared PbS CQDs infrared photodiode with the sputtered ZnO ETL demonstrated lower dark current density, higher external quantum efficiency, and faster photoresponse compared with the sol-gel ZnO device. Simulation results further unveiled the relationship between interface defects and device dark current. Finally, a high-performance sputtered ZnO/PbS CQDs device was obtained with a specific detectivity of 2.15 × 1012 Jones at -3 dB bandwidth (94.6 kHz).

17.
Blood Adv ; 7(6): 918-932, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36469551

RESUMO

B-cell activating factor receptor (BAFF-R) is a mature B-cell survival receptor, which is highly expressed in a wide variety of B-cell malignancies but with minimal expression in immature B cells. These properties make BAFF-R an attractive target for therapy of B-cell lymphomas. We generated a novel humanized anti BAFF-R monoclonal antibody (mAb) with high specificity and potent in vitro and in vivo activity against B-cell lymphomas and leukemias. The humanized variants of an original chimeric BAFF-R mAb retained BAFF-R binding affinity and antibody-dependent cellular cytotoxicity (ADCC) against a panel of human cell lines and primary lymphoma samples. Furthermore, 1 humanized BAFF-R mAb clone and its afucosylated version, glycoengineered to optimize the primary mechanism of action, prolonged survival of immunodeficient mice bearing human tumor cell lines or patient-derived lymphoma xenografts in 3 separate models, compared with controls. Finally, the tissue specificity of this humanized mAb was confirmed against a broad panel of normal human tissues. Taken together, we have identified a robust lead-candidate BAFF-R mAb for clinical development.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Camundongos , Animais , Anticorpos Monoclonais/uso terapêutico , Linfócitos B , Linfoma de Células B/tratamento farmacológico , Anticorpos Monoclonais Humanizados , Linfoma/tratamento farmacológico
18.
Front Plant Sci ; 13: 1065807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570900

RESUMO

Litter decomposition is the main process that affects nutrient cycling and carbon budgets in mixed forests. However, knowledge of the response of the soil microbial processes to the mixed-litter decomposition of fresh leaf, semi-decomposed leaf and fine root is limited. Thus, a laboratory microcosm experiment was performed to explore the mixed-litter effects of fresh leaf, semi-decomposed leaf and fine root on the soil enzyme activity and microbial community in an evergreen broadleaf karst forest in Southwest China. Fresh leaf litter, semi-decomposed litter and fine root in the Parakmeria nitida and Dayaoshania cotinifolia forests, which are unique protective species and dominant species in the evergreen broadleaf forest, were decomposed alone and in all possible combinations, respectively. Our results showed that the mass loss of fresh leaf litter in three mixed-litter treatment was significantly higher than that in two mixed-litter treatment in the P. nitida and D. cotinifolia forests. Mass loss of fine root in the single litter treatment was significantly lower in the P. nitida forest and higher in the D. cotinifolia forest compared to that in the other litter treatments. There were insignificant differences in the activities of ß-glucosidase (BG) and leucine aminopeptidase (LAP) between control and mixed-litter treatment in the P. nitida forest and between control and single litter treatment in the D. cotinifolia forest. The N-acetyl-ß-D-glucosaminidase (NAG) activity was significantly increased by the single litter decomposition of fresh leaf and fine root and three mixed-litter decomposition in the P. nitida and D. cotinifolia forests. The activity of acid phospomonoesterase (AP) in the decomposition of fresh leaf litter was lower in the P. nitida forest and higher in the D. cotinifolia forest compared to that in control. The most dominant soil bacteria were Proteobacteria in the P. nitida forest and were Actinobacteria and Proteobacteria in the D. cotinifolia forest. Shannon, Chao1, ACE and PD indexes in the mixed-litter decomposition of fresh leaf and semi-decomposition litter were higher than that in control in P. nitida forest. There were insignificant differences in observed species and indexes of Chao1, ACE and PD between litter treatments in the D. cotinifolia forest. Richness of mixed-litter significantly affected mass loss, soil enzyme activity and microbial diversity in the P. nitida forest. Litter N concentration and the presence of fresh leaf litter were significantly correlated with the mass loss and soil enzyme activity in the P. nitida and D. cotinifolia forests. These results indicated that the presence of fresh leaf litter showed a non-negligible influence on mixed-litter decomposition and soil enzyme activity, which might be partly explained by litter initial quality in the P. nitida and D. cotinifolia forests.

19.
J Phys Chem Lett ; 13(51): 11892-11898, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36524775

RESUMO

Orbital mixing is paramount to chemistry as it plays a central role in bond formation. It is also important for technologies such as molecular doping of polymers, where the concept of fractional charge transfer is essentially orbital mixing between dopants and hosts. Likewise, it would be both fundamentally interesting and technologically relevant to investigate orbital mixing in emerging hybrid materials containing both inorganic and organic moieties. Here we report experimental observation of orbital mixing between valence band levels of strongly confined PbS quantum dots (QDs) and lowest unoccupied molecular levels of surface-bound high-electron affinity molecules (F4TCNQ), manifested as both an absorption blue-shift of PbS and the emergence of visible and infrared signatures of the fractional charge-transfer species of F4TCNQ. The degree of mixing can be controlled by varying the QD size or by varying the molecule/QD ratio for a specific QD size and can be quantitatively reproduced by a nondegenerate, two-level perturbation model.

20.
Nanotechnology ; 34(2)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215973

RESUMO

Electron transport layers (ETLs) are important components of high-performance all-inorganic perovskite nanocrystals light-emitting diodes (PNCs-LED). Herein, atomic layer deposition (ALD) of inorganic ZnO layer is combined to the organic 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) to form dual ETLs to enhance both the efficiency and stability of PNCs-LED simultaneously. Optimization of ZnO thickness suggested that 10 cycles ALD yields the best performance of the devices. The external quantum efficiency of the device reaches to 7.21% with a low turn-on voltage (2.4 V). Impressively, the dual ETL PNCs-LED realizes maximumT50lifetime of 761 h at the initial luminance of 100 nit, which is one of the top lifetimes among PNCs-LEDs up to now. The improved performance of dual ETL PNCs-LED is mainly due to the improved charge transport balance with favorable energy level matching. These findings present a promising strategy to modify the function layer via ALD to achieve both highly efficient and stable PNCs-LED.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...