Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119932, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241855

RESUMO

China's groundwater is facing a significant threat from nitrate pollution. Here we analyzed 2348 regional surveys of groundwater nitrate levels in China from 1990 to 2020, examining distribution, trends, and drivers. This study uncovers a concerning rise in nitrate pollution, with estimated median nitrate levels climbing from 3.84 mg/L in 1990 to 6.94 mg/L in 2020. A stark contrast is observed between regions: the northern areas have a median nitrate concentration of 8.54 mg/L, significantly higher than the southern regions, where the median is just 7.15 mg/L. From 1990 to 2020, agricultural activity consistently emerges as the dominant driver of changes in groundwater nitrate concentrations, while groundwater exploitation, domestic pollution, and industrial production also contribute to varying degrees. This analysis highlights the urgency for region-specific policies and interventions to address the escalating nitrate pollution in China's groundwater.

2.
Small ; : e2406908, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258366

RESUMO

The notorious polysulfide shuttling and uncontrollable Li-dendrite growth are the main obstacles to the marketization of Li-S batteries. Herein, a dual-functional material consisting of vacancy-rich quantum-sized Co nanodots anchored on a mesoporous carbon layer (v-Co/meso-C) is proposed. This material exposes more active sites to improve its reaction performance and simultaneously realizes excellent lithiophilicity and sulfiphilicity characteristics in Li-S electrochemistry. As Li metal deposition hosts, v-Co/meso-C shows small nucleation overpotential, low polarization, and ultra-long cycling stability in both half and symmetric cells, as confirmed by experimental studies. On the S cathode side, experimental and theoretical calculations demonstrate that v-Co/meso-C enhances the adsorption of polysulfides and boosts their catalytic conversion rate. This, in turn, suppresses the shuttle effect of polysulfides and improves sulfur utilization efficiency. Finally, a shuttle-free and dendrite-free v-Co/meso-C@Li//v-Co/meso-C@S full cell is fabricated, exhibiting excellent rate performance (739 mAh g-1 at 5.0 C) and good cyclability (capacity decay rate is 0.033% and 0.035% per cycle at 2.0 and 5.0 C, respectively). Even a pouch cell with high sulfur loading (5.5 mg cm-2) and lean electrolyte/sulfur (4.8 µL mg-1) can still work 50 cycles with 80% capacity retention rate. This study shows far-reaching implications in the design of dendrite-free, shuttle-free Li-S batteries.

3.
Plant Physiol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325737

RESUMO

Indian jujube (Ziziphus mauritiana) holds a prominent position in the global fruit and pharmaceutical markets. Here, we report the assemblies of haplotype-resolved, telomere-to-telomere genomes of autotetraploid wild and cultivated Indian jujube plants using a two-stage assembly strategy. The generation of these genomes permitted in-depth investigations into the divergence and evolutionary history of this important fruit crop. Using a graph-based pan-genome constructed from eight monoploid genomes, we identified structural variation (SV)-FST hotspots and SV hotspots. Gap-free genomes provide a means to obtain a global view of centromere structures. We identified presence-absence variation-related genes in four monoploid genomes (cI, cIII, wI, and wIII) and resequencing populations. We also present the population structure and domestication trajectory of the Indian jujube based on the resequencing of 73 wild and cultivated accessions. Metabolomic and transcriptomic analyses of mature fruits of wild and cultivated accessions unveiled the genetic basis underlying loss of fruit astringency during domestication of Indian jujube. This study reveals mechanisms underlying the divergence, evolution, and domestication of the autotetraploid Indian jujube and provides rich and reliable genetic resources for future research.

4.
Food Chem ; 460(Pt 2): 140603, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096802

RESUMO

To improve the stability of pollock bone broth, compound emulsifiers were employed and evaluated in nano-emulsions from pollock bones (PBNs). The microstructure, creaming index, particle size, zeta potential, and viscosity of PBNs were characterized and the stability of PBNs was investigated. It revealed that the concentration of compound emulsifiers is one of the principal factors for particle size, zeta potential, and viscosity of PBNs, and 0.9% of sodium caseinate and sucrose fatty acid ester (CS-SE) can make the PBN display good stability. Its particle size changed from 81.17 ± 1.33 nm to 19.62 ± 0.21 nm when the temperature ranged from 40 °C to 80 °C, and its creaming index could reach a maximum (90.83%) among all PBNs in 4 months of freeze-thaw assays. PBN stability could be improved by the compound emulsifier (CS-SE), which offers a theoretical basis for the application of pollock bone broth.


Assuntos
Emulsificantes , Emulsões , Tamanho da Partícula , Emulsificantes/química , Emulsões/química , Animais , Viscosidade , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos
5.
J Agric Food Chem ; 72(36): 20130-20139, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39192723

RESUMO

We combined a CRISPR/Cas12a system with a hybridization chain reaction (HCR) to develop an ultrasensitive magnetic relaxation switching (MRS) biosensor for detecting viable Salmonella typhimurium (S. typhimurium). Magnetic nanoparticles of two sizes (30 and 1000 nm: MNP30 and MNP1000, respectively) were coupled through HCR. The S. typhimurium gene-activated CRISPR/Cas12a system released MNP30 from the MNP1000-HCR-MNP30 complex through a trans-cleavage reaction. After magnetic separation, released MNP30 was collected from the supernatant and served as a transverse relaxation time (T2) signal probe. Quantitative detection of S. typhimurium is achieved by establishing a linear relationship between the change in T2 and the target gene. The biosensor's limit of detection was 77 CFU/mL (LOD = 3S/M, S = 22.30, M = 0.87), and the linear range was 102-108 CFU/mL. The accuracy for detecting S. typhimurium in real samples is comparable to that of qPCR. Thus, this is a promising method for the rapid and effective detection of foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Contaminação de Alimentos , Salmonella typhimurium , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/genética , Animais , Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hibridização de Ácido Nucleico , Limite de Detecção , Suínos
6.
Colloids Surf B Biointerfaces ; 243: 114146, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173311

RESUMO

Scaffolds with multiphasic structures are considered to be superior for guided tissue regeneration. Two types of tilapia skin collagen gradient membranes (stepped gradient and linear gradient) with multiphasic structures were prepared by controlling the collagen concentrations and the freezing rates. The results revealed that collagen gradient membranes were more capable of guiding tissue regeneration compared to homogeneous membranes. These two gradient membranes featured a dense outer layer and a loose inner layer, with good mechanical properties as indicated by tensile strengths of more than 250 Kpa and porosities exceeding 85 %. Additionally, these membranes also showed good hydrophilicity and water absorption, with an inner layer contact angle of less than 91° and a water absorption ratio greater than 40 times. Furthermore, the multiphasic scaffolds were proved to be biocompatible by the acute toxicity assay, the intradermal irritation test and so on. Gradient membranes could effectively promote the adhesion and proliferation of fibroblasts and osteoblasts, through elevating the TGF-ß/Smad signaling pathway by TGF-ß and Smads, and activating the Wnt/ß-catenin signaling pathway by LRP5 and ß-catenin, similar to homogenous membranes. Therefore, collagen gradient membranes from tilapia skin show important application value in guiding tissue regeneration.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Colágeno/química , Colágeno/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/citologia , Proliferação de Células/efeitos dos fármacos , Membranas Artificiais , Tilápia/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Camundongos , Teste de Materiais , Pele/metabolismo , Adesão Celular/efeitos dos fármacos , Resistência à Tração
7.
Talanta ; 280: 126709, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39151317

RESUMO

Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Técnicas Biossensoriais/métodos , Humanos , Aptâmeros de Nucleotídeos/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Animais
8.
Sci Adv ; 10(28): eadn5698, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985882

RESUMO

Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.


Assuntos
Ouro , Nanopartículas Metálicas , Sistemas Automatizados de Assistência Junto ao Leito , Ouro/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Humanos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Biomarcadores/análise
9.
Lab Chip ; 24(9): 2537-2550, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623757

RESUMO

The diverse commensal microbiome of the human intestine has been considered to play a central role in depression. However, no host-microbiota co-culture system has been developed for depression, which hinders the controlled study of the interaction between depression and gut microbiota. We designed and manufactured a microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression (depression-on-gut-chip, DoGC), which enables the extended co-culture of viable aerobic human intestinal epithelial cells and anaerobic gut microbiota, and allows the direct study of interactions between human gut microbiota and depression. We introduced representative gut microbiota from individuals with depression into our constructed DoGC model, successfully recapitulating the gut microbiota structure of depressed patients. This further led to the manifestation of physiological characteristics resembling depression, such as reduced gut barrier function, chronic low-grade inflammatory responses and decreased neurotransmitter 5-HT levels. Metabolome analysis of substances in the DoGC revealed a significant increase in lipopolysaccharides and tyrosine, while hyodeoxycholic acid, L-proline and L-threonine were significantly reduced, indicating the occurrence of depression. The proposed DoGC can serve as an effective platform for studying the gut microbiota of patients with depression, providing important cues for their roles in the pathology of this condition and acting as a powerful tool for personalized medicine.


Assuntos
Depressão , Microbioma Gastrointestinal , Dispositivos Lab-On-A-Chip , Humanos , Depressão/metabolismo , Depressão/microbiologia , Técnicas de Cocultura , Técnicas Analíticas Microfluídicas/instrumentação , Células CACO-2 , Modelos Biológicos
10.
Environ Sci Technol ; 58(17): 7270-7278, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625742

RESUMO

Lead poisoning is globally concerning, yet limited testing hinders effective interventions in most countries. We aimed to create annual maps of county-specific blood lead levels in China from 1980 to 2040 using a machine learning model. Blood lead data from China were sourced from 1180 surveys published between 1980 and 2022. Additionally, regional statistical figures for 15 natural and socioeconomic variables were obtained or estimated as predictors. A machine learning model, using the random forest algorithm and 2973 generated samples, was created to predict county-specific blood lead levels in China from 1980 to 2040. Geometric mean blood lead levels in children (i.e., age 14 and under) decreased significantly from 104.4 µg/L in 1993 to an anticipated 40.3 µg/L by 2040. The number exceeding 100 µg/L declined dramatically, yet South Central China remains a hotspot. Lead exposure is similar among different groups, but overall adults and adolescents (i.e., age over 14), females, and rural residents exhibit slightly lower exposure compared to that of children, males, and urban residents, respectively. Our predictions indicated that despite the general reduction, one-fourth of Chinese counties rebounded during 2015-2020. This slower decline might be due to emerging lead sources like smelting and coal combustion; however, the primary factor driving the decline should be the reduction of a persistent source, legacy gasoline-derived lead. Our approach innovatively maps lead exposure without comprehensive surveys.


Assuntos
Chumbo , Aprendizado de Máquina , Chumbo/sangue , China , Humanos , Feminino , Masculino , Criança , Adolescente , Exposição Ambiental , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/sangue
11.
Food Chem ; 449: 139238, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583401

RESUMO

Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.


Assuntos
Leite , Impressão Molecular , Soroalbumina Bovina , Animais , Leite/química , Bovinos , Soroalbumina Bovina/química , Pirróis/química , Polímeros/química , Biomarcadores/análise , Limite de Detecção , Técnicas Eletroquímicas/instrumentação
12.
Adv Healthc Mater ; 13(13): e2303967, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334004

RESUMO

Aggregation-induced emission luminogens (AIEgens) are promising photosensitizers that have exhibited excellent antibacterial ability with abundant reactive oxygen species (ROS) generation. TTCPy-PF6 and TTCPy-Br are deposited on the surface of diverse solid substrates through plasma-assistant electrostatic self-assembly. The AIEgens-covered coating can effectively eliminate different pathogenic Gram-positive (G+) bacteria and even their multidrug-resistant (MDR) mutants with negligible side effects such as cytotoxicity, hemolysis, and inflammation. Moreover, the AIEgen-coated surface can maintain high stability for long-time antibacterial usage, which is dependent on the ROS-mediated disruption of the attached bacteria. The AIEgen-based coatings with broad surface applicability have many advantages in high antibacterial ability, great biocompatibility, and low possibility of antibiotic pollution. The robust antibacterial ability and excellent biological safety of the AIEgen-based coatings would be helpful for the disinfection of medical devices.


Assuntos
Antibacterianos , Desinfecção , Fármacos Fotossensibilizantes , Antibacterianos/farmacologia , Antibacterianos/química , Desinfecção/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Humanos , Testes de Sensibilidade Microbiana
13.
Food Chem ; 439: 138097, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061304

RESUMO

Synergistic cross-linkers could improve the taste acceptability of ready-to-eat sea cucumber (RSC). Besides, the hardness of RSC was increased by 331.00% and 266.87% after synergistic cross-linking. Synergistic cross-linking treatment could ameliorate the non-enzymatic degradation of RSC collagen and polysaccharides. Gaussian calculations results showed that dipeptides containing asparagine residues may have different reaction pathways. The main cleavage pathways of CH3CO-Asn-Gly-NHCH3 (NG) might be water-assisted side chain cyclization, stepwise cyclamide hydrolysis via a Gemdiol Intermediate, deamination, and peptide bond breakage. The relative free energy of cyclamide hydrolysis process of NG was increased by 8.2 kcal/mol after synergistic cross-linking. The mass spectrometry results showed that typical peptides could cleavage at NG, CH3CO-Asn-Lys-NHCH3 (NK) and CH3CO-Asn-Leu-NHCH3 (NL) sites after heating, which justified the breakage pattern of peptides in Gaussian calculations. It can offer a comprehensive theoretical basis for the processing of the ready-to-eat sea cucumber with storage stability.


Assuntos
Pepinos-do-Mar , Animais , Cromatografia Gasosa-Espectrometria de Massas , Peptídeos , Compostos de Sulfonilureia , Asparagina/química
14.
Hortic Res ; 10(11): uhad208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046855

RESUMO

The propagation of cultivated garlic relies on vegetative cloves, thus flowers become non-essential for reproduction in this species, driving the evolution of reproductive feature-derived traits. To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic, the evolutionary histories of two main reproduction-related traits, bolting and flower differentiation, were explored by genome analyses using 134 accessions displaying wide diversity in these two traits. Resequencing identified 272.8 million variations in the garlic genome, 198.0 million of which represent novel variants. Population analysis identified five garlic groups that have evolved into two clades. Gene expression, single-cell transcriptome sequencing, and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development, some of which display distinct selection signatures. Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1, the global transcription factor group E protein-encoding Asa5G01527.1, and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting. Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic. Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.

15.
Nano Lett ; 23(19): 9056-9064, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738391

RESUMO

Sepsis is an acute systemic infectious syndrome with high fatality. Fast and accurate diagnosis, monitoring, and medication of sepsis are essential. We exploited the fluorescent metal-AIEgen frameworks (MAFs) and demonstrated the dual functions of protein detection and bacteria identification: (i) ultrasensitive point-of-care (POC) detection of sepsis biomarkers (100 times enhanced sensitivity); (ii) rapid POC identification of Gram-negative/positive bacteria (selective aggregation within 20 min). Fluorescent lateral flow immunoassays (LFAs) are convenient and inexpensive for POC tests. MAFs possess a large surface area, excellent photostability, high quantum yield (∼80%), and multiple active sites serving as protein binding domains for ultrasensitive detection of sepsis biomarkers (IL-6/PCT) on LFAs. The limit of detection (LOD) for IL-6/PCT is 0.252/0.333 pg/mL. Rapid appraisal of infectious bacteria is vital to guide the use of medicines. The dual-functional fluorescent MAFs have great potential in POC tests for the clinical diagnosis of bacterial infections.

16.
Cell Host Microbe ; 31(7): 1101-1110.e5, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37442098

RESUMO

Antibiotic resistance is a serious threat to public health. Here, we propose a multi-armed chemical scaffold (MACS) for antibiotic screening, which refers to multi-armed molecules (MAMs) consisting of a core unit and three or four arms, neither of which is active for pathogens. Based on a structure-activity relationship study of MAMs, we discover a class of multi-armed antibiotics (MAAs) with a core similar to ethylene (E), carbon atom (C), benzene (B), nitrogen atom (N), and triazine (T) and three or four 4-phenylbenzoic acid (PBA) arms, or a B core and three 4-vinylbenzoic acid (VBA) or 4-ethynylbenzoic acid (EBA) arms. They can selectively interact with Gram-positive bacteria and inhibit cell wall assembly by targeting the lipid carriers of cell wall biosynthesis. MAAs have excellent antibacterial activities against Gram-positive bacteria, including clinical multi-drug-resistant (MDR) isolates. Our study provides a chemical scaffold and identifies eight antibacterial lead compounds for the development of antibiotics.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
17.
Small ; 19(48): e2304290, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37525345

RESUMO

Developing stable silicon-based and lithium metal anodes still faces many challenges. Designing new highly practical silicon-based anodes with low-volume expansion and high electrical conductivity, and inhibiting lithium dendrite growth are avenues for developing silicon-based and lithium metal anodes, respectively. In this study, SiOx Cy microtubes are synthesized using a chemical vapor deposition method. As Li-ion battery anodes, the as-prepared SiOx Cy not only combines the advantages of nanomaterials and the practical properties of micromaterials, but also exhibits high initial Coulombic efficiency (80.3%), low volume fluctuations (20.4%), and high cyclability (98% capacity retention after 1000 cycles). Furthermore, SiOx Cy , as a lithium deposition substrate, can effectively promote the uniform deposition of metallic lithium. As a result, low nucleation overpotential (only 6.0 mV) and high Coulombic efficiency (≈98.9% after 650 cycles, 1.0 mA cm-2 and 1.0 mAh cm-2 ) are obtained on half cells, as well as small voltage hysteresis (only 9.5 mV, at 1.0 mA cm-2 ) on symmetric cells based on SiOx Cy . Full batteries based on both SiOx Cy and SiOx Cy @Li anodes demonstrate great practicality. This work provides a new perspective for the simultaneous development of practical SiOx Cy and dendrite-free lithium metal anodes.

18.
Adv Healthc Mater ; 12(21): e2300045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37042250

RESUMO

Multidrug-resistant (MDR) bacteria-related wound infections are a thorny issue. It is urgent to develop new antibacterial wound dressings that can not only prevent wounds from MDR bacteria infection but also promote wound healing. Herein, an aggregation-induced emission (AIE) molecule BITT-composited bacterial cellulose (BC) is presented as wound dressings. BC-BITT composites have good transparency, making it easy to monitor the wound healing process through the composite membrane. The BC-BITT composites retain the advantages of biocompatible BC, and display photodynamic and photothermal synergistic antibacterial effects under irradiation of a 660 nm laser. Furthermore, the BC-BITT composites show excellent wound healing performance in a mouse full-thickness skin wound model infected by MDR bacteria, simultaneously with negligible toxicity. This work paves a way for treating clinically troublesome wound infections.


Assuntos
Celulose , Infecção dos Ferimentos , Camundongos , Animais , Celulose/farmacologia , Cicatrização , Bactérias , Antibacterianos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-36780196

RESUMO

Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to the development of a stable Li metal anode. Here, an ultralight Mg3N2-modified carbon foam (CF-Mg3N2) was fabricated as a collector to address these issues. The calculated results show that the CF-Mg3N2 composite is relatively stable in terms of energy. Based on the synergistic effect of the three-dimensional skeleton and the lithiophilic nature of Mg3N2, homogeneous lithium deposition/stripping was realized around the foam carbon skeleton with an extremely low nucleation overpotential (∼9.3 mV) and high retention of Coulombic efficiency (99.3%) as well as long cyclability (700 cycles and 3000 h in half and symmetrical cells, respectively). Meanwhile, Mg3N2-CF@Li//LiFePO4 full cells also showed better rate capability and more stable cycling capability than CF@Li//LiFePO4 and Li//LiFePO4 cells, exhibiting extreme practicality. Accordingly, the design concept mentioned in this work provides a far-reaching influence on the development of a stable Li metal anode.

20.
Nano Lett ; 22(23): 9559-9565, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449467

RESUMO

The broad application of silicon-based materials is limited by large volume fluctuation, high preparation costs, and complicated preparation processes. Here, we synthesized SiOxCy microspheres on 3D copper foams by a simple chemical vapor deposition method using a low-cost silane coupling agent (KH560) as precursors. The SiOxCy microspheres are available with a large mass loading (>3 mg/cm2) on collectors and can be directly used as the electrode without any binders or extra conductive agents. As a result, the as-prepared SiOxCy shows a high reversible capacity of ∼1240 mAh g-1 and can be cycled more than 1900 times without decay. Ex situ characterizations show that the volume change of the microspheres is only 55% and the spherical morphology as well as the 3D structure remain intact after cycles. Full-cell electrochemical tests paired with LiFePO4 as cathodes show 87% capacity retention after 500 cycles, better than most reported results, thus showing the commercial potential of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA