Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Eur Radiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856782

RESUMO

OBJECTIVES: Aneurysm wall enhancement (AWE) on high-resolution contrast-enhanced vessel wall MRI (VWMRI) is an emerging biomarker for intracranial aneurysms (IAs) stability. Quantification methods of AWE in the literature, however, are variable. We aimed to determine the optimal post-contrast timing to quantify AWE in both saccular and fusiform IAs. MATERIALS AND METHODS: Consecutive patients with unruptured IAs were prospectively recruited. VWMRI was acquired on 1 pre-contrast and 4 consecutive post-contrast phases (each phase was 9 min). Signal intensity values of cerebrospinal fluid (CSF) and aneurysm wall on pre- and 4 post-contrast phases were measured to determine the aneurysm wall enhancement index (WEI). AWE was also qualitatively analyzed on post-contrast images using previous grading criteria. The dynamic changes of AWE grade and WEI were analyzed for both saccular and fusiform IAs. RESULTS: Thirty-four patients with 42 IAs (27 saccular IAs and 15 fusiform IAs) were included. The changes in AWE grade occurred in 8 (30%) saccular IAs and 6 (40%) in fusiform IAs during the 4 post-contrast phases. The WEI of fusiform IAs decreased 22.0% over time after contrast enhancement (p = 0.009), while the WEI of saccular IAs kept constant during the 4 post-contrast phases (p > 0.05). CONCLUSIONS: When performing quantitative analysis of AWE, acquiring post-contrast VWMRI immediately after contrast injection achieves the strongest AWE for fusiform IAs. While the AWE degree is stable for 36 min after contrast injection for saccular IAs. CLINICAL RELEVANCE STATEMENT: The standardization of imaging protocols and analysis methods for AWE will be helpful for imaging surveillance and further treatment decisions of patients with unruptured IAs. KEY POINTS: Imaging protocols and measurements of intracranial aneurysm wall enhancement are reported heterogeneously. Aneurysm wall enhancement for fusiform intracranial aneurysms (IAs) is strongest immediately post-contrast, and stable for 36 min for saccular IAs. Future multi-center studies should investigate aneurysm wall enhancement as an emerging marker of aneurysm growth and rupture.

2.
Clin Transl Med ; 14(5): e1686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769658

RESUMO

BACKGROUND: Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS: The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS: Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS: Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.


Assuntos
Fibrose , Transplante de Rim , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas de Membrana , Mitofagia , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Animais , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Transplante de Rim/efeitos adversos , Fibrose/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Aloenxertos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas
3.
Front Neurol ; 15: 1298385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426176

RESUMO

Objective: Metabolomics has found extensive applications in the field of neurological diseases, significantly contributing to their diagnosis and treatment. However, there has been limited research applying metabolomics to moyamoya disease (MMD). This study aims to investigate and identify differential metabolites associated with MMD. Methods: We employed a liquid chromatography coupled with mass spectrometry (LC-MS) approach, complemented by univariate and multivariate analyses, to discern metabolic biomarkers in cerebrospinal fluid samples. We then compared these biomarkers between MMD patients and healthy controls (Ctl). Results: Sixteen patients diagnosed with MMD via cerebral angiography and eight healthy controls were enrolled in this study. Comparative analyses, including univariate and multivariate analyses, correlation studies, heatmaps, Volcano Plots, and KEGG pathway enrichment, were performed between MMD patients and controls. As a result, we identified 129 significant differential metabolites in the cerebrospinal fluid between MMD patients and controls. These metabolic biomarkers are associated with various pathways, with notable involvement in purine and pyrimidine metabolism. Conclusion: Utilizing an LC-MS-based metabolomics approach holds promise for enhancing the clinical diagnosis of MMD. The identified biomarkers offer potential avenues for the development of novel diagnostic methods for MMD and offer fresh insights into the pathogenesis of the disease.

4.
AJNR Am J Neuroradiol ; 45(3): 262-270, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38388686

RESUMO

BACKGROUND AND PURPOSE: Intracranial plaque enhancement (IPE) identified by contrast-enhanced vessel wall MR imaging (VW-MR imaging) is an emerging marker of plaque instability related to stroke risk, but there was no standardized timing for postcontrast acquisition. We aim to explore the optimal postcontrast timing by using multiphase contrast-enhanced VW-MR imaging and to test its performance in differentiating culprit and nonculprit lesions. MATERIALS AND METHODS: Patients with acute ischemic stroke due to intracranial plaque were prospectively recruited to undergo VW-MR imaging with 1 precontrast phase and 4 consecutive postcontrast phases (9 minutes and 13 seconds for each phase). The signal intensity (SI) values of the CSF and intracranial plaque were measured on 1 precontrast and 4 postcontrast phases to determine the intracranial plaque enhancement index (PEI). The dynamic changes of the PEI were compared between culprit and nonculprit plaques on the postcontrast acquisitions. RESULTS: Thirty patients with acute stroke (aged 59 ± 10 years, 18 [60%] men) with 113 intracranial plaques were included. The average PEI of all intracranial plaques significantly increased (up to 14%) over the 4 phases. There was significantly increased PEI over the 4 phases for culprit plaques (an average increase of 23%), but this was not observed for nonculprit plaques. For differentiating culprit and nonculprit plaques, we observed that the performance of IPE in the second postcontrast phase (cutoff = 0.83, AUC = 0.829 [0.746-0.893]) exhibited superior accuracy when compared with PEI in the first postcontrast phase (cutoff = 0.48; AUC = 0.768 [0.680-0.843]) (P = .022). CONCLUSIONS: A 9-minute delay of postcontrast acquisition can maximize plaque enhancement and better differentiate between culprit and nonculprit plaques. In addition, culprit and nonculprit plaques have different enhancement temporal patterns, which should be evaluated in future studies.


Assuntos
Arteriosclerose Intracraniana , AVC Isquêmico , Placa Aterosclerótica , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Arteriosclerose Intracraniana/patologia , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/patologia
5.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338316

RESUMO

BACKGROUND: The development of an anti-drug antibody (ADA)-tolerant pharmacokinetic (PK) assay is important when the drug exposure is irrelevant to toxicity in the presence of ADA. We aimed to develop and validate an ADA-tolerant assay for an exatecan-based antibody-drug conjugate (ADC) in monkey plasma. RESULTS: The assay tolerated 5.00 µg/mL of ADA at 12 µg/mL of ADC. Its accuracy and precision results satisfied the acceptance criteria. Furthermore, the assay was free from hook and matrix effects and exhibited good dilutional linearity. Additionally, the ADC in plasma samples was stable under different storage conditions. METHOD: An ADA-tolerant ADC assay was configured with an anti-payload antibody for capture, and a drug-target protein combined with a horseradish peroxidase (HRP)-labeled antibody against a drug-target-protein tag for detection. Samples were firstly acidified to dissociate drug and ADA complexes, and to convert the carboxylate form to the lactone form of exatecan molecules; then, the ADAs in the samples were removed with a naked antibody-coated microplate. The treated samples were further incubated with coated anti-payload antibody and captured ADC molecules were quantified by the detection reagent. The developed assay was optimized and validated against regulatory guidelines. CONCLUSIONS: The assay met both methodological and sample-related ADA tolerance requirements, and was applicable to a nonclinical study in cynomolgus monkeys.


Assuntos
Camptotecina/análogos & derivados , Imunoconjugados , Animais , Haplorrinos , Anticorpos
6.
J Cereb Blood Flow Metab ; 44(7): 1163-1173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38233750

RESUMO

Cerebral hyperperfusion (CHP) occurred frequently after direct superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery for moyamoya disease (MMD). We analyzed cortical microvascular density (CMD) and the change of cerebral blood flow (LΔCBF) using intraoperative laser speckle contrast imaging (LSCI) on 130 hemispheres of 95 consecutive adult patients with MMD. The demographic characteristics, cortical hemodynamic sources, bypass methods, intraoperative blood flow data, and relative CBF changes on single-photon emission computed tomography (SPECT) examination (SΔrCBF) were compared between the groups with and without CHP. The median values for CMD, LΔCBF, and SΔrCBF were significantly higher in the CHP group than in the non-CHP group (CMD 0.240 vs 0.206, P = 0.004; LΔCBF 2.285 vs 1.870, P < 0.001; SΔCBF 1.535 vs 1.260, P < 0.001). Multivariate analysis revealed that hemodynamic sources of recipient parasylvian cortical arteries from MCA (M-PSCAs), end-to-side (E-S) bypass method, CMD ≥ 0.217, and LΔCBF ≥ 1.985 were the risk factors for CHP. Intraoperative LSCI was useful for evaluating hemodynamics and predicting CHP in patients with MMD.


Assuntos
Revascularização Cerebral , Circulação Cerebrovascular , Hemodinâmica , Imagem de Contraste de Manchas a Laser , Artéria Cerebral Média , Doença de Moyamoya , Artérias Temporais , Humanos , Doença de Moyamoya/cirurgia , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Adulto , Masculino , Circulação Cerebrovascular/fisiologia , Feminino , Revascularização Cerebral/métodos , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/cirurgia , Artéria Cerebral Média/fisiopatologia , Artérias Temporais/cirurgia , Artérias Temporais/diagnóstico por imagem , Imagem de Contraste de Manchas a Laser/métodos , Hemodinâmica/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Adulto Jovem
7.
Eur Radiol ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172441

RESUMO

OBJECTIVES: Significant atherosclerotic stenosis or occlusion in the distal internal carotid artery (ICA) may induce diffuse wall thickening (DWT) in the upstream arterial wall. This study aimed to assess the association of atherosclerotic steno-occlusive diseases in the distal ICA with DWT in the upstream ipsilateral ICA. METHODS: Individuals with atherosclerotic stenosis in the distal ICA, detected by carotid MR vessel wall imaging using 3D pre- and post-contrast T1 volume isotropic turbo spin-echo acquisition (T1-VISTA) sequence, were enrolled. The associations of vessel wall thickening, the longitudinal extent of DWT, enhancement of the upstream ipsilateral ICA, and stenosis degree in the distal ICA were examined. RESULTS: Totally 64 arteries in 55 patients with atherosclerotic steno-occlusive distal ICAs were included. Significant correlations were found between distal ICA stenosis and DWT in the petrous ICA (r = 0.422, p = 0.001), DWT severity (r = 0.474, p < 0.001), the longitudinal extent of DWT in the ICA (r = 0.671, p < 0.001), enhancement in the petrous ICA (r = 0.409, p = 0.001), and enhancement degree (r = 0.651, p < 0.001). In addition, high degree of enhancement was correlated with both increased wall thickness and increased prevalence of DWT in the petrous ICA (both p < 0.001). CONCLUSIONS: DWT of the petrous ICA is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal ICA. The degree of stenosis in the distal ICA is associated with wall thickening and its longitudinal extent in the upstream segments. CLINICAL RELEVANCE STATEMENT: Diffuse wall thickening is a common secondary change in atherosclerotic steno-occlusive disease in the intracranial carotid. This phenomenon constitutes a confounding factor in the distinction between atherosclerosis and inflammatory vasculopathies, and could be reversed after alleviated atherosclerotic stenosis. KEY POINTS: • Diffuse wall thickening of the petrous internal carotid artery is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal internal carotid artery. • The phenomenon of diffuse wall thickening could be reversed after stenosis alleviation. • Carotid artery atherosclerosis with diffuse wall thickening should warrant a differential diagnosis from other steno-occlusive diseases, including moyamoya diseases and Takayasu aortitis.

8.
Pharmacol Res ; 200: 107051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190956

RESUMO

Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dinâmica Mitocondrial , Domínios PR-SET , Fibrose , Aloenxertos/metabolismo , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT1/metabolismo
10.
Comput Methods Programs Biomed ; 244: 107975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128464

RESUMO

BACKGROUND AND OBJECTIVE: Intracranial aneurysms are relatively common life-threatening diseases, and assessing aneurysm rupture risk and identifying the associated risk factors is essential. Parameters such as the Oscillatory Shear Index, Pressure Loss Coefficient, and Wall Shear Stress are reliable indicators of intracranial aneurysm development and rupture risk, but aneurysm surface irregular pulsation has also received attention in aneurysm rupture risk assessment. METHODS: The present paper proposed a new approach to estimate aneurysm surface deformation. This method transforms the estimation of aneurysm surface deformation into a constrained optimization problem, which minimizes the error between the displacement estimated by the model and the sparse data point displacements from the four-dimensional CT angiography (4D-CTA) imaging data. RESULTS: The effect of the number of sparse data points on the results has been discussed in both simulation and experimental results, and it shows that the proposed method can accurately estimate the surface deformation of intracranial aneurysms when using sufficient sparse data points. CONCLUSIONS: Due to a potential association between aneurysm rupture and surface irregular pulsation, the estimation of aneurysm surface deformation is needed. This paper proposed a method based on 4D-CTA imaging data, offering a novel solution for the estimation of intracranial aneurysm surface deformation.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia Cerebral/métodos , Tomografia Computadorizada Quadridimensional/métodos , Simulação por Computador , Medição de Risco , Aneurisma Roto/diagnóstico por imagem
11.
Brain Sci ; 13(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38137144

RESUMO

BACKGROUND AND PURPOSE: The clinical features of and risk factors for postoperative stroke after surgical revascularization in adult moyamoya disease (MMD) have not been fully elucidated. To this end, the baseline clinical features were hereby described, and the risk factors for postoperative stroke were determined. METHODS: Data of 4078 MMD inpatients were collected retrospectively across all secondary- and higher-level hospitals of Hubei Province from January 2019 to December 2020. In accordance with inclusion and exclusion criteria, 559 adult MMD inpatients were finally enrolled. The associated characteristics and potential risk factors were analyzed, and the Kaplan-Meier risk of stroke was also calculated. RESULTS: The patients consisted of 286 females and 273 males, with a mean age of 49.1 ± 10.0 years, all of whom had at least 1 year of follow-up (median 25.1 months). There were 356 cases of preoperative ischemic symptoms and 203 cases of preoperative hemorrhage symptoms. Indirect, direct, and combined revascularization were conducted on 97, 105 and 357 patients, respectively. Among these patients, 17 had postoperative hemorrhagic stroke (PHS), and 43 had postoperative ischemic stroke (PIS). A comparison between PHS/PIS group and control group (patients without postoperative stroke events) showed that preoperative hemorrhage was significantly associated with PHS (p = 0.003), while hypertension (p = 0.003), diabetes mellitus (p = 0.003) and modified Rankin scale (mRS) (p = 0.034) at admission were associated with a higher rate of PIS. Furthermore, preoperative hemorrhagic stroke was identified as a risk factor for PHS (odds ratio [OR], 4.229 [95% CI, 1.244-14.376]; p = 0.021), while hypertension (odds ratio [OR], 0.424 [95% CI, 0.210-0.855]; p = 0.017), diabetes mellitus (odds ratio [OR], 0.368 [95% CI, 0.163-0.827]; p = 0.016) and admission mRS (odds ratio [OR], 2.301 [95% CI, 1.157-4.575]; p = 0.017) were found to be risk factors for PIS. CONCLUSIONS: The age distribution of adult MMD patients with revascularization was predominantly concentrated within the range from 46 to 55 years. Preoperative hemorrhage events were considered the risk factor for PHS. Hypertension, diabetes and admission mRS were correlated with PIS, and were also the risk factors for PIS. These results indicated the possible contribution of enhancing systematic disease management to the prevention of postoperative cerebrovascular accidents.

12.
World J Surg Oncol ; 21(1): 340, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880688

RESUMO

BACKGROUND: Adding anti-epidermal growth factor receptor (anti-EGFR) target agents to conversion therapy may improve the resection rates and survival of patients with potentially resectable metastatic colorectal cancer (mCRC). This study aims to analyze the efficacy and safety of additional anti-EGFR target agents. METHODS: A systematic search was conducted on PubMed, Web of Science, Embase, and Cochrane Library. And all relevant studies published in English before January 2023 were collected to explore the impact of additional anti-EGFR targeted agent on the efficacy and safety of patients with potentially resectable mCRC (PROSPERO: CRD42022340523, https://www.crd.york.ac.uk/PROSPERO/ ). RESULTS: This study included a total of 8 articles, including 2618 patients. The overall response rate (ORR) and R0 resection rates of the experimental group were higher than those of the control group, while there was no significant difference in progression-free survival (PFS) and overall survival (OS) between the two groups. In RAS/KRAS wild-type patients, the ORR (RR: 1.20, 95% Cl: 1.02-1.41, p = 0.03), R0 resection rate (RR: 1.60, 95% Cl: 1.17-2.20, p = 0.003), PFS (HR: 0.80, 95% Cl: 0.68-0.93, p = 0.003), and OS (HR: 0.87, 95% Cl: 0.76-0.99, p = 0.031) of the experimental group were higher than those of the control group. While in KRAS mutant patients, there was no statistical difference between the two groups in ORR, R0 resection rate, PFS, and OS. CONCLUSION: The addition of anti-EGFR targeted agents can improve the prognosis of RAS/KRAS wild-type patients with potentially resectable mCRC, while KRAS mutant patients may not benefit. In addition, the overall safety factor was controllable.


Assuntos
Neoplasias Colorretais , Humanos , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia , Receptores ErbB/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Metástase Neoplásica
13.
Front Neurol ; 14: 1251844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808502

RESUMO

Objective: The hemodynamic sources of recipient parasylvian cortical arteries (PSCAs) were significantly related to postoperative cerebral hyperperfusion (CHP) after bypass surgery in patients with moyamoya disease (MMD). The present study aimed to introduce a new method to investigate the characteristics of PSCAs hemodynamic sources and their relationships with clinical presentations in adult MMD and to provide preoperative evaluation for recipient vessel selection in MMD bypass surgery. Methods: The hemodynamic sources of the PSCAs in 171 symptomatic MMD hemispheres were analyzed by three-dimensional digital subtraction angiography (3D-DSA) combined with magnetic resonance angiography (MRA) fusion imaging. The spatial and temporal characteristics of the hemodynamic sources of the PSCAs and their associations with the patient's demographics, Suzuki stage, and initial onset type were investigated. Results: Six major types of hemodynamic sources in the PSCAs were observed. There was a significant difference between the hemodynamic sources of the PSCAs above and below the SF (P < 0.001). With advancing Suzuki stages, collateral flow to the PSCAs above the SF from the internal carotid arteries (ICAs) significantly decreased, while the non-ICAs increased (P < 0.001). Multivariate analysis revealed that hemodynamic sources of the PSCAs above the SF were significantly associated with patients' initial onset type (P = 0.026). Conclusion: In MMD hemispheres, the hemodynamic sources of the PSCAs above the SF are more varied than those below the SF and present a typical conversion trend from ICAs to non-ICAs with advancing Suzuki stages. Analyzing the hemodynamic sources of the PSCAs can help in understanding the conversion pattern of compensatory vascular systems, predicting episodes in MMD, and preoperatively evaluating suitable recipient vessel selection for bypass surgery to avoid postoperative CHP.

14.
Discov Med ; 35(178): 853-860, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811623

RESUMO

BACKGROUND: Sepsis-induced myocardial dysfunction (SIMD) confers substantial morbidity and mortality. Semaglutide treatment has demonstrated efficacy in ameliorating sepsis-related organ damage via attenuation of inflammation, oxidative stress, and apoptotic cell death. In this study, we constructed a mouse SIMD model using cecal ligation and puncture (CLP) to explore whether semaglutide preconditioning can modulate autophagy levels and attenuate myocardial injury. METHODS: C57BL/6 mice were randomly divided into six groups: sham, CLP (including CLP-6 h, CLP-12 h and CLP-24 h subgroups), semaglutide, and semaglutide+Compound-C, with five mice in each group. The latter two groups were given daily intraperitoneal injections of semaglutide for 14 days. The semaglutide+Compound-C group was given the autophagy inhibitor Compound-C intraperitoneally 1-hour before CLP surgery. After the last injection of semaglutide, SIMD mouse models were constructed by CLP surgery, while the sham group underwent a sham operation. All mice were sacrificed after surgery, and blood and myocardial specimens were collected. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory factors and myocardial injury markers in the serum, while quantitative real-time polymerase chain reaction (qRT-PCR) and western blot was used to detect the expression of autophagic markers [microtubule-associated protein 1A/1B-light chain 3B (LC3B), Beclin-1, p62] and AMP-activated protein kinase (AMPK) in myocardial tissue. Hematoxylin and eosin (H&E) staining was used to observe pathological changes in myocardial tissue. RESULTS: The myocardial fibers in the sham group were normal, while those in the CLP group showed disordered arrangement, interstitial edema, and a large number of infiltrating inflammatory cells. A few vacuolar changes were observed locally in the semaglutide group, and more vacuolar changes were observed in the semaglutide+Compound-C group. Autophagy was inhibited in the CLP group mice. Compared with the CLP group, the semaglutide group showed a decreased levels of inflammatory factors (tumor necrosis factor-α, interleukin-1ß) and myocardial injury markers (creatine kinase isoenzyme, cardiac troponin T) in the serum, a reduced expression of autophgic substrate p62, and an increased expression of LC3II (the lipidated form of LC3I)/LC3I (microtubule-associated protein 1A/1B-light chain 3), Beclin-1, and p-AMPK (phosphorylated AMP-activated protein kinase)/AMPK in the injured myocardial tissues of mice (p < 0.05). And the protective effects of semaglutide against SIMD were partially reversed by the treatment of AMPK inhibitor Compound-C (p < 0.05). CONCLUSIONS: Taken together, these data indicate that semaglutide provides protection against CLP-triggered myocardial inflammation and injury, potentially by reactivating myocardial autophagy pathways via activation of AMPK signaling. Further mechanistic studies are needed to definitively elucidate the functional significance of AMPK signaling in mediating the beneficial cardiac effects of semaglutide during sepsis.


Assuntos
Proteínas Quinases Ativadas por AMP , Sepse , Camundongos , Animais , Proteína Beclina-1 , Camundongos Endogâmicos C57BL , Autofagia , Fator de Necrose Tumoral alfa , Sepse/complicações , Sepse/tratamento farmacológico , Proteínas Associadas aos Microtúbulos
15.
Cancer Res ; 83(22): 3783-3795, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37668527

RESUMO

Recent advances in targeted therapy and immunotherapy have substantially improved the treatment of melanoma. However, therapeutic strategies are still needed for unresponsive or treatment-relapsed patients with melanoma. To discover antibody-drug conjugate (ADC)-tractable cell surface targets for melanoma, we developed an atlas of melanoma cell surface-binding antibodies (pAb) using a proteome-scale antibody array platform. Target identification of pAbs led to development of melanoma cell killing ADCs against LGR6, TRPM1, ASAP1, and MUC18, among others. MUC18 was overexpressed in both tumor cells and tumor-infiltrating blood vessels across major melanoma subtypes, making it a potential dual-compartment and universal melanoma therapeutic target. AMT-253, an MUC18-directed ADC based on topoisomerase I inhibitor exatecan and a self-immolative T moiety, had a higher therapeutic index compared with its microtubule inhibitor-based counterpart and favorable pharmacokinetics and tolerability in monkeys. AMT-253 exhibited MUC18-specific cytotoxicity through DNA damage and apoptosis and a strong bystander killing effect, leading to potent antitumor activities against melanoma cell line and patient-derived xenograft models. Tumor vasculature targeting by a mouse MUC18-specific antibody-T1000-exatecan conjugate inhibited tumor growth in human melanoma xenografts. Combination therapy of AMT-253 with an antiangiogenic agent generated higher efficacy than single agent in a mucosal melanoma model. Beyond melanoma, AMT-253 was also efficacious in a wide range of MUC18-expressing solid tumors. Efficient target/antibody discovery in combination with the T moiety-exatecan linker-payload exemplified here may facilitate discovery of new ADC to improve cancer treatment. SIGNIFICANCE: Discovery of melanoma-targeting antibodies using a proteome-scale array and use of a cutting-edge linker-payload system led to development of a MUC18-targeting antibody-exatecan conjugate with clinical potential for treating major melanoma subtypes.


Assuntos
Imunoconjugados , Melanoma , Canais de Cátion TRPM , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Proteoma , Inibidores da Topoisomerase I/farmacologia , Imunoterapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
16.
Front Microbiol ; 14: 1232314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744905

RESUMO

The ability of stimulator of interferon genes (STING) to activate interferon (IFN) responses during RNA virus infection has been demonstrated in different mammalian cells. Despite being the host of numerous RNA viruses, the role of STING in bats during RNA virus infection has not been elucidated. In this study, we identified and cloned the STING gene of the Brazilian free-tailed bat Tadarida brasiliensis (T. brasiliensis) and tested its ability to induce IFN-ß by overexpressing and knocking down bat STING (BatSTING) in T. brasiliensis 1 lung (TB1 Lu) cells. In addition, we used green fluorescent protein (GFP)-labeled vesicular stomatitis virus (VSV) VSV-GFP as a model to detect the antiviral activity of BatSTING. The results showed that overexpression of STING in TB1 Lu cells stimulated by cGAS significantly inhibited RNA virus replication, and the antiviral activities were associated with its ability to regulate basal expression of IFN-ß and some IFN stimulated genes (ISGs). We also found that BatSTING was able to be activated after stimulation by diverse RNA viruses. The results of TB1 Lu cells with STING deficiency showed that knockdown of BatSTING severely hindered the IFN-ß response triggered by VSV-GFP. Based on this, we confirm that BatSTING is required to induce IFN-ß expression during RNA virus infection. In conclusion, our experimental data clearly show that STING in bat hosts plays an irreplaceable role in mediating IFN-ß responses and anti-RNA virus infection.

17.
Ther Adv Chronic Dis ; 14: 20406223231181492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465163

RESUMO

Background: Technical improvements for preventing postoperative symptomatic cerebral hyperperfusion (CHP) during superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis for moyamoya disease (MMD) were seldom reported. Objectives: The aim of this study was to investigate the significance of application of a novel flow-controlled concept which voluntarily reduces the hemodynamic difference between the donor and recipient arteries based on the Hagen-Poiseuille law when performing direct anastomoses of recipient parasylvian cortical arteries (PSCAs) with anterograde hemodynamic sources from the MCA (M-PSCAs) in adult MMD. Design: This was a retrospective observational study. Methods: Direct anastomoses of recipient M-PSCAs were performed on 89 symptomatic hemispheres in 82 adult MMD patients in our hospital from January 2020 to June 2021. They were divided into the flow-controlled group (patients who received direct anastomosis under designed flow-controlled principles) and non-flow-controlled group (patients who received conventional direct anastomosis to obtain maximum flow). The patients' basic characteristics and incidence of postoperative CHP were compared between the two groups. Risk factors for occurrence of postoperative CHP were analyzed. Results: Overall, 36 hemispheres were included in the non-flow-controlled group and 53 in flow-controlled group. The incidences of postoperative focal (22.6%) and symptomatic CHP (5.7%) in the flow-controlled group were significantly lower than those (focal, 52.8%; symptomatic, 25.0%) in the non-flow-controlled group (p = 0.003 and 0.009, respectively). Multivariate analysis revealed that the flow-controlled concept was significantly associated with the development of focal (p = 0.005) and symptomatic (p = 0.012) CHP. Conclusion: The flow-controlled STA-MCA anastomosis can significantly decrease the incidence of postoperative CHP during direct anastomoses of recipient M-PSCAs in adult MMD.

18.
Cell Death Discov ; 9(1): 271, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507403

RESUMO

Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.

19.
Mol Cancer Ther ; 22(9): 1013-1027, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302522

RESUMO

HER3 is a unique member of the EGFR family of tyrosine kinases, which is broadly expressed in several cancers, including breast, lung, pancreatic, colorectal, gastric, prostate, and bladder cancers and is often associated with poor patient outcomes and therapeutic resistance. U3-1402/Patritumab-GGFG-DXd is the first successful HER3-targeting antibody-drug conjugate (ADC) with clinical efficacy in non-small cell lung cancer. However, over 60% of patients are nonresponsive to U3-1402 due to low target expression levels and responses tend to be in patients with higher target expression levels. U3-1402 is also ineffective in more challenging tumor types such as colorectal cancer. AMT-562 was generated by a novel anti-HER3 antibody Ab562 and a modified self-immolative PABC spacer (T800) to conjugate exatecan. Exatecan showed higher cytotoxic potency than its derivative DXd. Ab562 was selected because of its moderate affinity for minimizing potential toxicity and improving tumor penetration purposes. Both alone or in combination therapies, AMT-562 showed potent and durable antitumor response in low HER3 expression xenograft and heterogeneous patient-derived xenograft/organoid models, including digestive system and lung tumors representing of unmet needs. Combination therapies pairing AMT-562 with therapeutic antibodies, inhibitors of CHEK1, KRAS, and tyrosine kinase inhibitor showed higher synergistic efficacy than Patritumab-GGFG-DXd. Pharmacokinetic and safety profiles of AMT-562 were favorable and the highest dose lacking severe toxicity was 30 mg/kg in cynomolgus monkeys. AMT-562 has potential to be a superior HER3-targeting ADC with a higher therapeutic window that can overcome resistance to generate higher percentage and more durable responses in U3-1402-insensitive tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoconjugados , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-3 , Receptores ErbB , Linhagem Celular Tumoral
20.
J Neurosurg ; 139(6): 1705-1714, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347656

RESUMO

OBJECTIVE: Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease and features the formation of hazy collateral vessels at the base of the brain. Angiopoietin (Ang)-1 and -2, their receptor Tie-2, and vascular endothelial growth factor (VEGF) that regulate angiogenesis might be important in MMD pathophysiology and postoperative collateral formation. The goal of this study was to determine whether levels of these angiogenic factors could predict collateralization in patients with MMD. METHODS: A total of 196 patients with MMD and 57 with atherosclerotic cerebrovascular disease serving as controls were enrolled. Ang-1, Ang-2, Tie-2, and VEGF mRNA levels were analyzed in middle cerebral artery (MCA) arterial wall specimens by using real-time quantitative polymerase chain reaction. MCA and peripheral plasma concentrations of Ang-1, Ang-2, soluble Tie-2 (sTie-2), and VEGF were examined by enzyme-linked immunosorbent assay. Cerebral arteriography was performed 6 months after bypass surgery to assess the postoperative collateralization. RESULTS: In MCA specimens, patients with MMD exhibited higher expression levels of Ang-1 and Ang-2 but lowered VEGF expression. The patients with MMD had significantly higher concentrations of Ang-1 and Ang-2 but lower levels of VEGF in MCA plasma. Peripheral plasma concentrations of these growth factors were not changed. MCA and peripheral plasma sTie-2 levels were both reduced in patients with MMD. The 6-month follow-up showed that patients with good collateral formation had lower sTie-2 levels in both MCA and peripheral plasma. Furthermore, the Suzuki stage and peripheral plasma sTie-2 level were significantly correlated with good postoperative collateral formation on multivariate analysis. CONCLUSIONS: Ang-1, Ang-2, Tie-2, and VEGF are involved in MMD pathogenesis. The peripheral plasma level of sTie-2 can differentiate MMD from atherosclerotic cerebrovascular disease and serve as a novel biomarker to predict postoperative collateral formation.


Assuntos
Doença de Moyamoya , Fator A de Crescimento do Endotélio Vascular , Humanos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/cirurgia , Receptor TIE-2 , Angiopoietina-2 , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...