Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Inflammation ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865056

RESUMO

Microsomal PGE2 synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E2 (PGE2). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO4) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO4 application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.

2.
J Pineal Res ; 76(4): e12964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803014

RESUMO

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Assuntos
Ritmo Circadiano , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/etiologia , Camundongos , Masculino , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Progressão da Doença , Camundongos Endogâmicos C57BL , Fotoperíodo , Rim/metabolismo , Rim/patologia
3.
Elife ; 132024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805545

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Assuntos
Cartilagem Articular , Via de Sinalização Hippo , Homeostase , Osteoartrite , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Animais , Cartilagem Articular/metabolismo , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Catenina/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Front Bioeng Biotechnol ; 12: 1347312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333078

RESUMO

The development of micro/nanorobots and their application in medical treatment holds the promise of revolutionizing disease diagnosis and treatment. In comparison to conventional diagnostic and treatment methods, micro/nanorobots exhibit immense potential due to their small size and the ability to penetrate deep tissues. However, the transition of this technology from the laboratory to clinical applications presents significant challenges. This paper provides a comprehensive review of the research progress in micro/nanorobotics, encompassing biosensors, diagnostics, targeted drug delivery, and minimally invasive surgery. It also addresses the key issues and challenges facing this technology. The fusion of micro/nanorobots with medical treatments is poised to have a profound impact on the future of medicine.

5.
Adv Sci (Weinh) ; 11(14): e2308164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326080

RESUMO

The collective total syntheses of (±)-hosieines A-C with a cage-like tetracyclic framework have been realized, which includes the first syntheses of hosieines B-C. The key strategy of the synthesis employs a one-pot domino reaction that involves Cu-catalyzed [3+2] cycloaddition, 1,6-enone formation, and 1,6-aza-Michael addition forming the 5/6/6-aza-tricyclic skeleton. Other salient synthetic tactics comprise a challenging double bond migration and a 1,4-aza-Michael addition reaction to afford the tetracyclic framework.

6.
Biosens Bioelectron ; 251: 116099, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330773

RESUMO

Abortive transcripts (ATs) refer to nascent 2-10 nucleotides (nt) RNAs released by RNA polymerases before synthesizing productive RNAs. The quantitative detection of ATs is important for studying transcription initiation and the biological function of ATs; however, no method is available for the qualitative and quantitative assessment of such ultra-short oligonucleotides (typically shorter than 11 nt) in vivo at present, even with the LNA probes, the detection limit can only reach 11 nt. Here, we demonstrated the base stacking hybridization assisted ligation (BSHAL) technique, combined with TaqMan-MGB qPCR, can detect 4-10 nt ATs with a specificity of nucleotide resolution and a sensitivity of approximately 10 pM. By this technique, we detected endogenous ATs in cell lines, mice plasmas, and mice liver tissues, respectively, and proved that naturally occurring ATs do exist. We found that the 8 nt ATs of HMSB and Gapdh could be used as reference ATs for data normalization in Homo and mouse respectively, and 8 nt ATs of Afp and Gpc3 were suitable for use as plasma biomarkers of Hepatocellular carcinoma in mouse, indicate ATs are promising biomarkers. This study offers opportunities to study ATs and other ultra-short oligonucleotides in biological samples.


Assuntos
Técnicas Biossensoriais , Neoplasias Hepáticas , Camundongos , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Reação em Cadeia da Polimerase , Oligonucleotídeos , Biomarcadores
7.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293189

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that Cbfß, (subunit of a heterodimeric Cbfß/Runx1,Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfß in tamoxifen-induced Cbfßf/fCol2α1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/YAP signaling and TGF-ß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfß overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfß overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfß may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and TGFß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfß overexpression could be an effective strategy for treatment of OA.

8.
J Colloid Interface Sci ; 660: 810-822, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277838

RESUMO

Harnessing accelerated interfacial redox, thus boosting charge separation, is of great importance in photocatalytic solar hydrogen generation. In effect, nanoassembling non-noble metallic phases in CdS-based systems and elucidating their role in photocatalysis hold the key to eventually boosting electron shuttle in the field. Here we combine an efficient in-situ exsoluted metallic Co0 nanoparticles on a carbides matrix (CMG) with CdS (CdS@CoCMG) for photogeneration of hydrogen. The metallic cobalt phase exhibits strong binding at the CdS-carbide dual interfaces, forming the accelerated "electron converter" mechanism validated by charge transfer kinetics and achieving two orders of magnitude faster hydrogen production (44.42 mmol g-1 h-1) relative to CdS (0.43 mmol g-1 h-1). We propose that the unique catalyst configuration enable the directional electron-relay photocatalysis via harnessing interfaces between Co0 phase, carbides, and CdS clusters, which eventually boosts the redox process and charge separation of the integrated system, leading to high H2 production rates in the suspension.

9.
Inflamm Res ; 73(2): 263-276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200372

RESUMO

BACKGROUND: Janus kinase 2 (JAK2) mutation plays an important role in T cell immunity. However, the effect of JAK2 mutation on immunotherapy is largely uncharacterized. METHODS: In this study, we analyzed the effect of JAK2 mutation on the efficacy and outcomes of immune checkpoint inhibitor (ICI) therapy in the discovery cohort (n = 662) and the verification cohort (n = 1423). Furthermore, we explored the association of JAK2 mutation with the tumor immune microenvironment in a multiomics cohort. RESULTS: In the discovery cohort (n = 662), JAK2 mutant-type patients had a better objective response rate (58.8% vs. 26.7%, P = 0.010), durable clinical benefit (64.7% vs. 38.9%, P = 0.043), progression-free survival (hazard ratio [HR] = 0.431, P = 0.015), and overall survival (HR = 0.378, P = 0.025), relative to JAK2 wild-type patients. Moreover, we further verified the prognostic significance of JAK2 mutation in an independent ICI treatment cohort with a larger sample size (n = 1423). In addition, we discovered that the JAK2 mutation was remarkably related to increased immunogenicity, such as a higher TMB, higher expression of costimulatory molecules and stimulation of antigen processing mechanisms. In addition, JAK2 mutation was positively correlated with activated anticancer immunity, such as infiltration of various immune cells and higher expression of chemokines. CONCLUSION: Our study demonstrates that JAK2 mutation is a novel marker that can be used to effectively predict prognosis and response to ICI therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Janus Quinase 2 , Humanos , Janus Quinase 2/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Mutação , Biomarcadores Tumorais
10.
Curr Stem Cell Res Ther ; 19(5): 755-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37680161

RESUMO

BACKGROUND: To investigate the roles of extracellular vesicles (EVs) secreted from bone marrow mesenchymal stem cells (BMSCs) and miR-27 (highly expressed in BMSC EVs) in hepatic ischemia‒ reperfusion injury (HIRI). APPROACHES AND RESULTS: We constructed a HIRI mouse model and pretreated it with an injection of agomir-miR-27-3p, agomir-NC, BMSC-EVs or control normal PBS into the abdominal cavity. Compared with the HIRI group, HIRI mice preinjected with BMSC-EVs had significantly decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and alleviated liver necrosis (P<0.05). However, compared with HIRI+NC mice, HIRI+miR-27b mice had significantly increased ALT and AST levels, aggravated liver necrosis, and increased apoptosis-related protein expression (P<0.05). The proliferation and apoptosis of AML-12 cells transfected with miR-27 were significantly higher than the proliferation and apoptosis of AML-12 cells in the mimic NC group (P<0.01) after hypoxia induction. SMAD4 was proven to be a miR-27 target gene. Furthermore, compared to HIRI+NC mice, HIRI+miR-27 mice displayed extremely reduced SMAD4 expression and increased levels of wnt1, ß-catenin, c-Myc, and Cyclin D1. CONCLUSION: Our findings reveal the role and mechanism of miR-27 in HIRI and provide novel insights for the prevention and treatment of HIRI; for example, EVs derived from BMSCs transfected with antimiR- 27 might demonstrate better protection against HIRI.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Fígado/metabolismo , Vesículas Extracelulares/metabolismo , Traumatismo por Reperfusão/genética , Células-Tronco Mesenquimais/metabolismo , Necrose , Leucemia Mieloide Aguda/metabolismo
11.
Front Oncol ; 13: 1290330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148841

RESUMO

Autophagy, a crucial cellular mechanism responsible for degradation and recycling of intracellular components, is modulated by an intricate network of molecular signals. Its paradoxical involvement in oncogenesis, acting as both a tumor suppressor and promoter, has been underscored in recent studies. Central to this regulatory network are the epigenetic modifications of DNA and RNA methylation, notably the presence of N6-methyldeoxyadenosine (6mA) in genomic DNA and N6-methyladenosine (m6A) in eukaryotic mRNA. The 6mA modification in genomic DNA adds an extra dimension of epigenetic regulation, potentially impacting the transcriptional dynamics of genes linked to autophagy and, especially, cancer. Conversely, m6A modification, governed by methyltransferases and demethylases, influences mRNA stability, processing, and translation, affecting genes central to autophagic pathways. As we delve deeper into the complexities of autophagy regulation, the importance of these methylation modifications grows more evident. The interplay of 6mA, m6A, and autophagy points to a layered regulatory mechanism, illuminating cellular reactions to a range of conditions. This review delves into the nexus between DNA 6mA and RNA m6A methylation and their influence on autophagy in cancer contexts. By closely examining these epigenetic markers, we underscore their promise as therapeutic avenues, suggesting novel approaches for cancer intervention through autophagy modulation.

12.
Ultrason Sonochem ; 101: 106674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924614

RESUMO

Carbon dots (CDs) are a fascinating new type of fluorescent carbon nanomaterial with excellent photoelectric properties. However, preparing long-wavelength and multicolor-emitting CDs has been challenging, limiting their large-scale applications. Fortunately, a new efficient method has been proposed to co-regulate CDs' multicolor spectra using an ultrasonic microreactor. Inspired by plant leaves, a bionic vein microchannel was designed with good fluidity and high energy transfer efficiency. The optimal microchannel structural parameters were determined after investigating the effects of fractal angle, depth-to-width ratio, and inlet angle on the flow uniformity of the microchannel using numerical simulations. The efficiency of ultrasonic energy transfer was improved by directly coupling the microreactor and the sandwich transducer to fabricate the ultrasonic microreactor. Simulation results showed that the ultrasonic microreactor's vibration resonated along the longitudinal direction, and the ultrasonic intensity of the microreactor was maximal and uniform. A high-efficiency and controllable ultrasonic microreactor system was built to synthesize the CDs in situ. The influence of the ultrasound field intensity on CDs' preparation in a microreactor was simultaneously investigated to verify the ultrasound enhancement, and the PLQY of the high-performance CDs was found to be 83.1%. The CDs' multicolor spectra from the blue to the red region can be precisely tuned by adjusting key reaction parameters such as reaction temperature, flow rate, and precursor concentration. This new method shows promising applications in lighting, display, and other fields, making CDs a versatile and exciting new material to explore.

13.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37791375

RESUMO

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

14.
Org Lett ; 25(37): 6853-6857, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37682751

RESUMO

A Cu-catalyzed diastereoselective [3 + 2] cycloaddition of 2-arylaziridines and cyclic silyl dienol ethers was developed to efficiently construct fused-[5,n] carbocyclic pyrrolidines, which are widespread in bioactive natural products. Mechanistic studies revealed that the high diastereoselectivity of this transformation arose from a sequential retro aza-Michael/epimerization/aza-Michael process. Taking advantage of this newly developed method, the first total syntheses of pancratinines B and C were concisely realized.

15.
Front Neurosci ; 17: 1219988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662099

RESUMO

Transformer, a deep learning model with the self-attention mechanism, combined with the convolution neural network (CNN) has been successfully applied for decoding electroencephalogram (EEG) signals in Motor Imagery (MI) Brain-Computer Interface (BCI). However, the extremely non-linear, nonstationary characteristics of the EEG signals limits the effectiveness and efficiency of the deep learning methods. In addition, the variety of subjects and the experimental sessions impact the model adaptability. In this study, we propose a local and global convolutional transformer-based approach for MI-EEG classification. The local transformer encoder is combined to dynamically extract temporal features and make up for the shortcomings of the CNN model. The spatial features from all channels and the difference in hemispheres are obtained to improve the robustness of the model. To acquire adequate temporal-spatial feature representations, we combine the global transformer encoder and Densely Connected Network to improve the information flow and reuse. To validate the performance of the proposed model, three scenarios including within-session, cross-session and two-session are designed. In the experiments, the proposed method achieves up to 1.46%, 7.49% and 7.46% accuracy improvement respectively in the three scenarios for the public Korean dataset compared with current state-of-the-art models. For the BCI competition IV 2a dataset, the proposed model also achieves a 2.12% and 2.21% improvement for the cross-session and two-session scenarios respectively. The results confirm that the proposed approach can effectively extract much richer set of MI features from the EEG signals and improve the performance in the BCI applications.

16.
Stem Cell Rev Rep ; 19(8): 2820-2836, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37594613

RESUMO

BACKGROUND: Hepatic ischemia‒reperfusion injury (HIRI) is a pathological phenomenon during liver surgery, and bone marrow-mesenchymal stem cell (BMSC) exosomes (BMSC-Exos) regulate cell apoptosis and reduce ischemia‒reperfusion injury. We aimed to investigate the roles of BMSC-Exos and miR-25b-3p (enriched in BMSC-Exos) in HIRI and elucidate the underlying mechanisms. APPROACHES AND RESULTS: An HIRI mouse model was constructed and preinjected with BMSC-Exos, agomir-miR-25, agomir-miR-NC, or PBS via the tail vein. Compared with mice with HIRI, mice with HIRI preinjected with BMSC-Exos had significantly decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and alleviated liver necrosis (P < 0.05). Quantitative hepatic transcriptomics showed that mice with HIRI preinjected with BMSC-Exos exhibited increased cell division, hematopoietic or lymphoid organ development and metabolic processes. miRNA sequencing of BMSC-Exos revealed that miR-25, which is related to I/R injury, was enriched in the exosomes. Compared with HIRI + NC mice, HIRI + miR-25b-3p mice had significantly increased miR-25b-3p expression, decreased ALT/AST levels and apoptosis-related protein expression (P < 0.05), and alleviated liver necrosis. The proliferation of AML-12 cells transfected with miR-25b-3p was significantly higher than that in the mimic NC group (P < 0.01) after hypoxia induction, and the apoptosis rate of cells was significantly lower than that in the NC group (P < 0.01). PTEN was identified as a miR-25b-3p target gene. PTEN expression was significantly diminished in miR-25b-3p-transfected AML12 cells (P < 0.05). HIRI + agomir-miR-25 mice displayed reduced PTEN expression and decreased p53 and cleaved caspase 3 levels compared to HIRI + NC mice. CONCLUSIONS: We revealed the roles and underlying mechanisms of BMSC-Exos and miR-25 in HIRI, contributing to the prevention and treatment of HIRI.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/genética , Apoptose/genética , Necrose/metabolismo
17.
BMC Cancer ; 23(1): 702, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495949

RESUMO

BACKGROUND: To compare the clinical value of recombinant human granulocyte colony-stimulating factor (rhG-CSF) and pegylated rhG-CSF(PEG-rhG-CSF) in early-stage breast cancer (EBC) patients receiving adjuvant chemotherapy, compare the efficacy of PEG-rhG-CSF with different dose and explore the timing of rhG-CSF rescue treatment. METHODS: Patients in two PEG-rhG-CSF subgroups were given 3 mg or 6 mg PEG-rhG-CSF within 24 ~ 48 h after chemotherapy for preventing myelosuppression, while patients in the rhG-CSF group were given rhG-CSF. Observation indicators include the incidence of febrile neutropenia (FN) and grade 3/4 chemotherapy-induced-neutropenia (CIN), the overall levels and nadir values of white blood cells (WBC) and absolute neutrophil count (ANC), comparison of WBC and ANC curves over time, the incidence of CIN-related complications, the incidence of adverse events in each group and the timing of rescue treatment for rhG-CSF. RESULTS: There was no significant difference in the incidence of FN in the first cycle among the groups (P = 0.203). But the incidence of ≥ 3 grade CIN in two PEG-rhG-CSF subgroups was significantly lower than that in the rhG-CSF group (P < 0.001). The overall WBC and ANC levels in the PEG-rhG-CSF group were significantly higher than those in the rhG-CSF group (P < 0.001). In terms of CIN-related complications, less chemotherapy delay rate (1.1 vs. 7.5%, P = 0.092), less dose reduction rate (6.9 vs. 7.5%, P = 1.000), less antibiotic use rate (3.4 vs. 17.5%, P = 0.011) and less proportion of rhG-CSF rescue therapy (24.1 vs. 85.0%, P < 0.001) in the PEG-rhG-CSF group, and there were no significant differences between PEG-rhG-CSF subgroups. In the incidence of adverse events among the groups, there were no statistical differences. All patients undergoing rhG-CSF rescue treatment were mainly 4 grade (63.6%) and 3 grade (25.5%) CIN, and 10.9% of patients with 1 ~ 2 grade CIN who had high infection risk or had been infected. CONCLUSION: PEG-rhG-CSF has better efficacy and equal tolerance compared with rhG-CSF in preventing CIN in EBC patients receiving EC regimen. Moreover, a half-dose 3 mg PEG-rhG-CSF also had good efficacy. Last, patients with ≥ 3 grade CIN and others who have been assessed to be at high risk of infection or have co-infection should consider rhG-CSF or even antibiotic rescue treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neutropenia , Feminino , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Fator Estimulador de Colônias de Granulócitos , Neutropenia/induzido quimicamente , Neutropenia/prevenção & controle , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico
18.
Front Oncol ; 13: 1076469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397355

RESUMO

Objectives: This study evaluated the efficacy and safety of apatinib (an oral small-molecule tyrosine kinase inhibitor targeting VEGFR-2) 250 mg combined with chemotherapy in patients with pretreated metastatic breast cancer in a real-world setting. Patients and methods: A database of patients with advanced breast cancer who received apatinib between December 2016 and December 2019 in our institution was reviewed, and patients who received apatinib combined with chemotherapy were included. Progression-free survival (PFS), overall survival (OS), the objective response rate (ORR), the disease control rate (DCR), and treatment-related toxicity were analyzed. Results: In total, 52 evaluated patients with metastatic breast cancer previously exposed to anthracyclines or taxanes who received apatinib 250 mg combined with chemotherapy were enrolled in this study. Median PFS and OS were 4.8 (95% confidence interval [CI] = 3.2-6.4) and 15.4 months (95% CI = 9.2-21.6), respectively. The ORR and DCR were 25% and 86.5%, respectively. Median PFS for the previous line of treatment was 2.1 months (95% CI = 0.65-3.6), which was significantly shorter than that for the apatinib-chemotherapy combination (p < 0.001). No significant difference was identified in the ORR and PFS among the subgroups(subtypes, target lesion, combined regimens and treatment lines). The common toxicities related to apatinib were hypertension, hand-foot syndrome, proteinuria, and fatigue events. Conclusion: Apatinib 250 mg combined with chemotherapy provided favorable efficacy in patients with pretreated metastatic breast cancer regardless of molecular types and treatment lines. The toxicities of the regimen were well tolerated and manageable. This regimen could be a potential treatment option in patients with refractory pretreated metastatic breast cancers.

19.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417750

RESUMO

The ion-molecule reaction is one of the most important pathways for the formation of new interstellar chemical species. Herein, infrared spectra of cationic binary clusters of acrylonitrile (AN) with methanethiol (CH3SH) and dimethyl sulfide (CH3SCH3) are measured and compared to those previous studies of AN and methanol (CH3OH) or dimethyl ether (CH3OCH3). The results suggest that the ion-molecular reactions of AN with CH3SH and CH3SCH3 only yield products with S…HN H-bonded or S∴N hemibond structures, rather than the cyclic products as observed in AN-CH3OH and AN-CH3OCH3 studied previously. The Michael addition-cyclization reaction between acrylonitrile and sulfur-containing molecules does not occur due to the weaker acidity of CH bonds in sulfur-containing molecules, which results from their weaker hyperconjugation effect compared to oxygen-containing molecules. The reduced propensity for the proton transfer from the CH bonds hinders the formation of the Michael addition-cyclization product that follows.


Assuntos
Acrilonitrila , Gases , Prótons , Enxofre
20.
Front Plant Sci ; 14: 1119101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818851

RESUMO

Precipitation amount and seasonality can profoundly impact ecosystem carbon (C) and water fluxes. Water use efficiency (WUE), which measures the amount of C assimilation relative to the amount of water loss, is an important metric linking ecosystem C and water cycles. However, how increasing precipitation at different points in the growing season affects ecosystem WUE remains unclear. A manipulative experiment simulating increasing first half (FP+) and/or second half (SP+) of growing-season precipitation was conducted for 4 years (2015-2018) in a temperate steppe in the Mongolian Plateau. Gross ecosystem productivity (GEP) and evapotranspiration (ET) were measured to figure out ecosystem WUE (WUE = GEP/ET). Across the four years, FP+ showed no considerable impact on ecosystem WUE or its two components, GEP and ET, whereas SP+ stimulated GEP but showed little impact on ET, causing a positive response of WUE to FP+. The increased WUE was mainly due to higher soil water content that maintained high aboveground plant growth and community cover while ET was stable during the second half of growing season. These results illustrate that second half of growing-season precipitation is more important in regulating ecosystem productivity in semiarid grasslands and highlight how precipitation seasonality affects ecosystem productivity in the temperate steppe ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA