Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1190683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206890

RESUMO

Renal injury is one of the most common clinical manifestations of patients with hyperuricaemia/gout. The precise pathophysiological mechanism(s) for the renal injury is still unknown. Furthermore, it is also unclear whether the clinical therapies (e.g., colchicine and febuxostat) could prevent its progression or not. Lipids are involved in almost all of important biological processes and play critical roles in maintaining the renal functions. Herein, shotgun lipidomics was performed for class-targeted lipid analysis of cellular lipidomes in renal tissue of a gouty model induced by combination of monosodium urate crystals injection and high-fat diet feeding with/without treatment with either colchicine or febuxostat. Serum uric acid (UA), proinflammatory cytokines (i.e., TNF-α and IL-6), xanthine oxidase activity, footpad swelling, and pain threshold were determined to evaluate the gouty severity. Renal histopathological changes, blood urea nitrogen, creatinine, and kidney index were used to reflect renal injury. Lipidomics analysis revealed that altered triacylglycerol (TAG) profile, impaired mitochondrial function resulted by decreased tetra 18:2 cardiolipin, reduced 4-hydroxyalkenal (HNE) species, and elevated lysophospholipids were already present in the kidneys at early stage of renal injury, probably contributing to its occurrence and development. In addition to significantly reduce the UA level and relief the gouty severity, treatment with either colchicine or febuxostat could restore HNE bioavailability, thereby delaying the progression of renal injury. However, both of them could not recover the altered TAG profile and the impaired mitochondrial function, indicating that treatment with either of them could not completely prevent the development of renal injury in the gouty model.

2.
Front Biosci (Landmark Ed) ; 27(11): 307, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36472105

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disorder affecting almost any organ system without effective treatment. Based on accumulating evidence, activated T cells are key cause promoting the pathogenesis of SLE. A traditional clinic Langchuangding formula (LCD) is an effective clinical traditional Chinese medicine prescription for SLE with few side effects and good patient compliance. However, the mechanism of how LCD affects SLE remains unclear. METHODS: Targets related to LCD and SLE were predicted and overlapped to construct protein-protein interaction (PPI) for screening core target. Subsequently, flow cytometry analysis and Western-blot method were used to verify the expression levels of target gene in LCD serum treated-Jurkat T cells. The main compounds of LCD were identified by HPLC-MS and further docked with the core targe. RESULTS: 283 protein targets in LCD, 1498 SLE targets and 150 common targets were obtained to construct protein-protein interaction (PPI). Network pharmacology results suggested that LCD was closely related to CASP3 target. To verify the prediction of pharmacological mechanism of LCD treatment for SLE, we investigated the anti-proliferative effects of LCD-treated rat serum on ß-oestradiol (300 pg/mL)-activated Jurkat T cells in vitro using a CCK-8 kit and flow cytometry analysis and then analyzed the CASP3 expression levels. Vitro experiments confirmed that LCD serum could suppress the proliferation (p < 0.05) and induce apoptosis of the activated T cells through up-regulating CASP3 expression levels. Interactions between CASP3 target and LCD were further validated integrating HPLC-MS analysis and molecular docking. CONCLUSIONS: The results showed that LCD could relieve SLE, which might be attributed to inducing the activated T cells apoptosis by up-regulating CASP3 expression levels. The network pharmacology and molecular docking approach provide a new insight for deepening understanding about TCM. LCD potentially represents a promising therapeutic prescription for SLE supplement treatment with no adverse effects.


Assuntos
Lúpus Eritematoso Sistêmico , Farmacologia em Rede , Animais , Ratos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Caspase 3 , Prescrições , Lúpus Eritematoso Sistêmico/tratamento farmacológico
3.
Metabolites ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35629919

RESUMO

Cardiac involvement, displayed as premature cardiovascular disease (CVD), is one of common clinical symptoms of patients with systemic lupus erythematosus (SLE), contributing to mortality of the disease. The precise underlying pathological mechanism(s) for the cardiac involvement in lupus remains poorly understood. Lipids and their metabolites are directly involved in atherosclerosis development, oxidative stress, and inflammation, which are closely related to the development of CVD. In the study, shotgun lipidomics was exploited to quantitatively analyze cellular lipidomes in the cardiac tissue of MRL/lpr mice at two different time points (i.e., pre-lupus and lupus state) with/without treatment with glucocorticoids (GCs). Urine protein, spleen index, and renal histopathological evaluation of the mice were also performed for assessment of SLE onset and/or outcome. Lipidomics analysis revealed that the deposition of cholesterol and the aberrant metabolism of lipids caused by the increased energy metabolism and the enhanced activation of phospholipases, both of which were originally induced by inflammation, were already present in cardiac tissues from lupus-prone mice even at pre-lupus state. These lipid alterations could further induce inflammation and autoimmune responses, accelerating the process of CVD. In addition, the present study also demonstrated that GCs therapy could not only delay the progression of SLE, but also partially corrected these alterations of lipid species in cardiac tissue due to their anti-inflammatory effect. Thus, the medications with better anti-inflammatory effect might be a useful therapeutic method for premature CVD of SLE.

4.
Front Pharmacol ; 12: 648037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967784

RESUMO

Cornus officinalis Sieb et. Zucc and Paeonia lactiflora Pall. have exhibited favorable therapeutic effects against rheumatoid arthritis (RA), but the specific mechanisms of their active compounds remain unclear. The aim of this study was to comprehensively analyze the therapeutic mechanisms of selected active compounds in Cornus officinalis (loganin, ursolic acid, and morroniside) and Paeonia lactiflora (paeoniflorin and albiflorin) via network pharmacology. The pharmacological properties of the five active compounds were evaluated and their potential target genes were identified by database screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analysis were performed to determine the enriched molecular pathways associated with the active compounds. Using network pharmacology tools, eight genes (IL1ß, VEGFA, STAT3, TP53, IL6, TNF, FOS, and LGALS3) were identified as common targets between RA and the five active compounds. Molecular docking simulation revealed the compound-target relationship between the five active compounds and three selected targets from the eight common ones (LGALS3, STAT3, and VEGFA). The compound-target relationships were subsequently validated via preliminary in vivo experiments in a rat model of collagen-induced arthritis. Rats subjected to collagen-induced arthritis showed increased protein expression of LGALS3, STAT3, and VEGFA in synovial tissues. However, treatment using Cornus officinalis or/and Paeonia lactiflora, as well as their most drug-like active compounds (ursolic acid or/and paeoniflorin, respectively, identified based on pharmacological properties), attenuated the expression of these three targets, as previously predicted. Collectively, network pharmacology allowed the pharmacological and molecular roles of Cornus officinalis and Paeonia lactiflora to be systematically revealed, further establishing them as important candidate drugs in the treatment and management of RA.

5.
Front Pharmacol ; 12: 639009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897428

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to cartilage destruction and bone erosion. In-depth exploration of the pathogenesis of RA and the development of effective therapeutic drugs are of important clinical and social value. Herein, we explored the medicinal value of Cornus officinalis Sieb. and Paeonia lactiflora Pall. in RA treatment using a rat model of collagen-induced arthritis (CIA). We compared the therapeutic effect of Cornus officinalis and Paeonia lactiflora with that of their main active compounds, ursolic acid and paeoniflorin, respectively. We demonstrated that the combination of Cornus officinalis and Paeonia lactiflora effectively inhibited the release of factors associated with oxidative stress and inflammation during RA, therein ameliorating the symptoms and suppressing the progression of RA. We further showed that the underlying mechanisms may be related to the regulation of apoptosis in synovial tissues, and we investigated the potential involvement of AMPK-mediated mitochondrial dynamics in the therapeutic action of the two drugs and their active components.

6.
Free Radic Biol Med ; 163: 210-219, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352222

RESUMO

There exist close relationships among oxidative stress, dyslipidaemia, inflammation, and autoimmune response in patients with systemic lupus erythematosus (SLE). Dysfunction and/or dysregulation of immunocytes is one of the major characteristics of SLE pathogenesis. Lipids play many important roles in biological processes and cellular functions. We hypothesized that oxidative stress-induced aberrant lipid metabolism and integrity presented in immunocytes is one of the early events in patients, thereby leading to enhanced production of IgG autoantibodies and cytokines. Herein, shotgun lipidomics was employed for quantitative analysis of cellular lipidomes in peripheral blood mononuclear cells (PBMC) both freshly isolated from SLE patients and cultured with treatment. The levels of IgG autoantibodies and cytokines in cell culture media and serum samples from lupus-prone mice treated with a natural, powerful antioxidant isotonix OPC-3 were measured by ELISA kits. IgG antibody deposition in glomeruli of the mice was determined by immunofluorescence analysis. Lipidomics analysis of PBMC from 33 SLE patients and 28 healthy controls revealed aberrant lipid metabolism in PBMC from the patients. The changes included significantly reduced plasmalogens, markedly increased lysophospholipids, altered phosphatidylserines, and accumulated 4-hydroxyalkenals. These alterations of lipids in SLE PBMC could be significantly corrected after cultured with the antioxidant in vitro. Parallel to the IgG antibody deposition in glomeruli, the concentrations of cytokines (i.e., IL-10, IL-6, and TNF-α) and autoantibodies (e.g., IgG antiphospholipid and anti-dsDNA antibodies) in culture medium and serum samples from the mice after treatment with the antioxidant were also significantly reduced compared with those of the SLE group. The results clearly demonstrated that correction of the aberrant lipid metabolism led to inhibition of the autoimmune reactions of PBMC after reduction of the increased oxidative stress. The current study also revealed potential drug treatment of SLE with lesser adverse effects through reducing the aberrant lipid metabolism with an effective antioxidant.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , Animais , Autoanticorpos , Citocinas , Humanos , Metabolismo dos Lipídeos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Estresse Oxidativo
7.
J Ethnopharmacol ; 231: 545-554, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529425

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA), characterized by joint pain and cartilage degradation, is the most common form of joint disease worldwide but with no satisfactory therapy available. The ethanol extract of Agkistrodon acutus (EAA) has been widely used as a traditional Chinese medicine (TCM) for the treatment of arthralgia and inflammatory diseases, but there is no report regarding its efficacy on OA to date. Here, we determined the effects of EAA on the pain behavior and cartilage degradation in vivo and clarified its target genes and proteins associated with chondrocyte hypertrophy and apoptosis in vitro. MATERIALS AND METHODS: In vivo OA model was established by intra-articular injection (1.5 mg) of monosodium iodoacetate (MIA) into rats and weekly treated by intra-articular administration of EAA at a dose range from 0.3 to 0.9 g/kg for four weeks. The pain behavior parameters, thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were tested before and after the treatment. Then histopathologic, immunohistochemical and TUNEL analyses of the articular cartilage were conducted, followed by Mankin's scoring. In vitro, the effects of EAA on chondrocytes were evaluated via assays of cell viability, immunofluorescence, real time PCR, and Western blot. UPLC-MS was applied to determine the chemical composition of EAA. RESULTS: The animal data showed that EEA not only attenuated the pain hypersensitivity but also blocked the cartilage degeneration by improving chondrocyte survival and suppressing chondrocyte apoptosis at a dose-dependent manner in OA rats. Furthermore, EAA remarkably restored the abnormal expression of collagen type II (Col2) and matrix metalloproteinase-13 (MMP13) in cartilage of OA rats. The cellular data showed that EAA significantly increased the cell viability of chondrocytes against OA-like damage and restored the abnormal expressions of Col2 and MMP13 in damaged chondrocytes. The molecular data showed that EAA significantly restored the abnormal mRNA expressions of Col2, Col10, MMP2 and MMP13 as well as the abnormal protein expressions of MMP13, PARP (total and cleaved) in chondrocytes under pathological condition. UPLC-MS analysis showed the known main components of EAA, including amino acides (glycine, L-aspartic acid, L-glutamic acid, and L-hydroxyproline), nucleoside (uridine), purines (xanthine and hypoxanthine), and pyrimidine (uracil). CONCLUSIONS: Our data demonstrate that EAA exerts antinociceptive and chondroprotective effects on OA through suppressing chondrocyte hypertrophy and apoptosis with restoration of the molecular expressions of anabolism and catabolism in chondrocytes. It provides a promising TCM candidate of novel agent for OA therapy.


Assuntos
Agkistrodon , Analgésicos/uso terapêutico , Misturas Complexas/uso terapêutico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Hipertrofia/induzido quimicamente , Hipertrofia/tratamento farmacológico , Hipertrofia/patologia , Ácido Iodoacético , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Dor/induzido quimicamente , Dor/patologia , Ratos Sprague-Dawley
8.
RSC Adv ; 9(7): 3716-3725, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518061

RESUMO

Wenjinghuoluo (WJHL) prescription, the typical rheumatoid arthritis (RA) treatment compound in traditional Chinese medicine, shows favorable efficacy. The precise mechanism of WJHL on RA therapy is yet to be elucidated. This study aimed to determine the metabolic biomarkers in the early onset of RA and evaluate the regulation effect of WJHL on metabolite levels. Multivariate statistical analysis identified 93 biomarkers by precise MS/MS. These biomarkers played an important role in the regulation of key metabolic pathways associated with collagen-induced arthritis (CIA). A total of 68 biomarkers were related to the treatment of CIA by WJHL therapy. In addition, pathway analysis results showed six and three significant related pathways according to corresponding differential metabolites before and after WJHL therapy. Finally, disease and function prediction of ingenuity pathway analysis indicated that lipid metabolism, small molecule biochemistry, and carbohydrate metabolism were associated functions of WJHL therapy on CIA. Furthermore, top analysis-ready molecules of up-regulated thiamine and down-regulated arachidonic acid maybe the most related metabolites of WJHL therapy on CIA. The present work indicates that a metabolomics platform provides a new insight into understanding the mechanisms of action of natural medicines, such as WJHL.

9.
RSC Adv ; 9(49): 28409-28413, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529618

RESUMO

1,1-Difluoroethylated aromatics are of great importance in medicinal chemistry and related fields. 1,1-Difluoroethyl chloride (CH3CF2Cl), a cheap and abundant industrial raw material, is viewed as an ideal 1,1-difluoroethylating reagent, but the direct introduction of the difluoroethyl (CF2CH3) group onto aromatic rings using CH3CF2Cl has not been successfully accomplished. Herein, we disclose a nickel-catalyzed 1,1-difluoroethylation of arylboronic acids with CH3CF2Cl for the synthesis of (1,1-difluoroethyl)arenes.

10.
Oncotarget ; 8(27): 44242-44254, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28562338

RESUMO

Wenjinghuoluo prescription, a traditional Chinese medicine compound treatment of rheumatoid arthritis characterized by wind-cold-dampness arthralgia, contains five herbs, namely, C. cassia Presl., Cinnamomum cassia Presl., Paeonia lactiflora Pall., Saposhnikovia divaricate (Turcz.) Schischk., and Clematis chinensis Osbeck. We have reported that WJHL could inhibit the production of inflammatory mediators in immune cells. This study explored the effect and mechanism of WJHL on collagen-induced arthritis mice. WJHL could significantly improve clinical arthritic conditions; inhibit bone erosion and osteophyte formation in joints; decrease expression of proinflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-17); reduce protein expression levels of JAK2, p-JAK2, STAT3, p-STAT3 and gene expression levels of JAK2, STAT3, IL-17A, RORγt mRNA; elevate osteoprotegerin and Foxp3 mRNA levels and lower Th17 cell proportions in splenocytes. Results suggest that WJHL, specifically regulating the JAK2/STAT3 pathway and Th17 cells, may be a promising herbal medicine candidate for the treatment of RA.


Assuntos
Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Animais , Artrite Experimental/diagnóstico , Artrite Experimental/tratamento farmacológico , Biomarcadores , Biópsia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Fenótipo , Fosforilação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microtomografia por Raio-X
11.
Curr Alzheimer Res ; 14(10): 1123-1135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413987

RESUMO

OBJECTIVE: The etiological initiators of neuroinflammation remain inconclusive, and effective interventions to block neurodegeneration are unavailable. Surprisingly, we found collagen II-combined complete Freund's adjuvant (CC) that usually induces rheumatoid arthritis (RA) also drives Alzheimer's disease (AD)-like neurodegeneration in mice. CC not only upregulates the cerebral pro-inflammatory cytokines including tumor necrosis factor α (TNF-α) and interleukin 8 (IL-8), but also downregulates the cerebral interleukin 10 (IL-10), an anti-inflammatory cytokine, and tyrosine hydroxylase (TH), a ratelimiting enzyme for biosynthesis of the anti-inflammatory neurotransmitter dopamine. In contrast, electroacupuncture (EA) elevates TNF-α/IL-8 and declines IL-10/TH at first, but declines TNF-α/IL-8 and elevates IL-10/TH later. Upon impact on mitochondrial biogenesis, ubiquitination, and autophagy, EA firstly potentates but secondly attenuates CC-triggered signaling cascades leading to oxidation, nitrosylation, hypoxia, and angiogenesis. Eventually, EA compromises neurodegeneration by decreasing amyloid- ß peptide (Aß) and phosphorylated tau protein (p-tau), and also rectifies neuronal dysfunctions by increasing the cholinergic neurotransmitter acetylcholine (Ach) and its rate-limiting biosynthetic enzyme choline acetyltransferase (ChAT). RESULTS: Conclusively, EA initially aggravates and subsequently ameliorates CC-evoked AD-like earlyphase brain pathogenesis via conversion from pro-inflammatory microglia to anti-inflammatory microglia.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Encéfalo/imunologia , Encéfalo/patologia , Eletroacupuntura , Doença de Alzheimer/patologia , Animais , Animais não Endogâmicos , Modelos Animais de Doenças , Feminino , Colágenos Associados a Fibrilas , Adjuvante de Freund , Masculino , Camundongos , Microglia/imunologia , Microglia/patologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Neuroimunomodulação/fisiologia , Neurônios/imunologia , Neurônios/patologia , Óxido Nítrico Sintase/metabolismo , Distribuição Aleatória , Transmissão Sináptica/fisiologia
12.
Free Radic Biol Med ; 101: 475-481, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27836780

RESUMO

Oxidative stress is elevated in systemic lupus erythematosus (SLE) patients, and associated extensively with SLE pathogenesis. However, no common indicators of oxidative stress are yet in routine clinical use because of their instability, nonspecificity, and non-representation of all SLE symptoms. Moreover, the method for reproducible analysis of reactive oxygen species is still lacking. Lipids and their metabolites are essential components of biological systems, many of which serve as molecular targets of oxidative stress and play crucial roles in signaling, inflammation, and immune responses. Thus, determining the changed levels of lipids and their metabolites may serve the needs for SLE research. In the pilot study, shotgun lipidomics of sera from 30 SLE patients and 30 controls was performed and revealed a marked reduction of ethanolamine plasmalogen (pPE) species from 85.03±3.06 to 62.39±4.34 nmol/mL serum in controls and patients, respectively, accompanying significant increases in lysoPE (LPE) content (~46mol%) and 4-hydroxynonenal (an indictor of oxidative stress) in patients. Representative proinflammatory cytokines were also determined, revealing significant elevation of IL-6, IL-10, and TNF-α in SLE patients. Multivariate and multiple regression analyses showed for the first time that significant correlation among the SLE disease activity index, IL-10 levels, and pPE content exists, providing insights into SLE pathogenesis. The study also indicates that the changes of pPE (molecular targets of oxidative stress) and their peroxidation products may serve as novel biomarkers for diagnosis of SLE.


Assuntos
Interleucina-10/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Plasmalogênios/sangue , Adulto , Aldeídos/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Interleucina-6/sangue , Lúpus Eritematoso Sistêmico/patologia , Lisofosfolipídeos/sangue , Pessoa de Meia-Idade , Estresse Oxidativo , Projetos Piloto , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue
13.
AAPS J ; 17(3): 711-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762447

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease. The current standard treatment with glucocorticoids (GCs) leads to many adverse effects, and its effectiveness is questionable. Thus, it is critical and urgent to find new drug(s) for treatment of IPF. Baicalin (BAI) is an attractive candidate for this purpose. Herein, utilizing shotgun lipidomics, we revealed that IPF could lead to a lipid disorder of the liver in an animal model induced by bleomycin and confirmed through histopathological studies of the lung. Lipidomics further demonstrated that this disorder could virtually be corrected after treatment with BAI, but not with dexamethasone (DEX) (a commonly used GC for treatment of IPF). In contrast, the treatment with DEX did not improve IPF but led to tremendous alterations in hepatic lipidomes and accumulation of fat in the liver, which was very different from the lipid disorder induced by IPF. The underpinning mechanisms of the IPF-resultant lipid disorder and DEX-induced lipotoxicity as revealed by shotgun lipidomics were extensively discussed. Taken together, the current study showed that IPF could lead to hepatic lipid disorder, which can be treated with BAI, and demonstrated that lipidomics could be a powerful tool for drug screening.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Flavonoides/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Animais , Dexametasona/farmacologia , Dexametasona/toxicidade , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Glucocorticoides/farmacologia , Glucocorticoides/toxicidade , Fibrose Pulmonar Idiopática/complicações , Lipídeos/química , Hepatopatias/etiologia , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
J Sep Sci ; 38(7): 1248-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25598346

RESUMO

Sulfur-fumigation could alter the quality of white ginseng by damaging the bioactive compounds and generating sulfur-containing materials. In the present study, coupling needle-trap devices with comprehensive two-dimensional gas chromatography and high-resolution time-of-flight mass spectrometry was applied to rapidly reveal chemical transformation of volatile components from sulfur-fumigated ginseng. Thirty-two volatile compounds were not in white ginseng samples after sulfur-fumigation. Furthermore, 20 sulfur-containing compounds were identified for the first time in volatile oil of sulfur-fumigated white ginseng. The established approach could be applied to discriminate sulfur-fumigated white ginseng among commercial samples and to control the quality of white ginseng.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Agulhas , Panax , Enxofre/química , Volatilização
15.
Pharmacogn Mag ; 10(39): 249-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25210311

RESUMO

OBJECTIVE: Atractylodes macrocephala, a famous herbal medicine, is used extensively in the practice of Traditional Chinese Medicine (TCM). Processing procedure is a common approach that usually occurs before A. macrocephala is prescribed. This paper describes a sensitive and specific assay for the determination of principal volatile compounds in crude and processed A. macrocephala. MATERIALS AND METHODS: The present study concentrated on the development of a static headspace gas chromatography-mass spectrometry (SHS-GC/MS) for separating and identifying of volatile compounds from crude and processed A. macrocephala samples. RESULTS: The results showed that the volatile oil in crude and processed A. macrocephala was markedly quantitatively and qualitatively different. Processing resulted in the reduction of volatile oil contents and variation of chemical compositions in A. macrocephala. CONCLUSION: The proposed method proved that SHS-GC/MS is rapid and specific, and should also be useful for evaluating the quality of crude and processed medicinal herbs.

16.
Biomed Chromatogr ; 28(9): 1167-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24619878

RESUMO

Sulfur-fumigation is known to reduce volatile compounds that are the main active components in herbs used in herbal medicine. We investigated changes in chemical composition between sun-dried and sulfur-fumigated Radix Angelicae Dahuricae using a purge and trap technique to capture volatile compounds, and two-dimensional gas chromatography/time-of-flight mass spectrometry for identification. Using sun-dried Radix Angelicae Dahuricae samples as a reference, the results showed that 73 volatile compounds, including 12 sulfide compounds, were found to be present only in sulfur-fumigated samples. Furthermore, 32 volatile compounds that were found in sun-dried Radix Angelicae Dahuricae samples disappeared after sulfur-fumigation. The proposed method can be applied to accurately discriminate sulfur-fumigated Radix Angelicae Dahuricae from different commercial sources.


Assuntos
Angelica/química , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Fumigação/métodos , Raízes de Plantas/química , Plantas Medicinais/química , Enxofre/química , Compostos Orgânicos Voláteis/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-24381637

RESUMO

Ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-QTOF/MS) based on a chemical profiling method was applied to rapidly evaluate the chemical consistency between sun-dried and sulfur-fumigated Radix Paeoniae Alba. By virtue of the high resolution, high speed of UPLC, and the accurate mass measurement of TOFMS coupled with reliable MarkerLynx software, five newly assigned monoterpene glycoside sulfonates were found and identified in sulfur-fumigated Radix Paeoniae Alba samples. This method could be applied for rapid quality evaluation of different kinds of sulfur-fumigated Radix Paeoniae Alba among commercial samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...