Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38781058

RESUMO

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum- like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum- like block.

2.
IEEE Trans Biomed Eng ; 70(3): 812-823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36040933

RESUMO

OBJECTIVE: Myocardial infarction (MI) causes rapid and permanent damage to the heart muscle. Therefore, it can deteriorate the myocardial structure and function if not timely diagnosed and treated. However, it is difficult to determine the precise localization of MI based on vectorcardiogram (VCG) due to the existing studies ignore the spatiotemporal features of VCG. METHODS: In this paper, a precise MI localization method was proposed based on Tucker decomposition. The multi-scale characteristics of wavelet transform and the spatiotemporal characteristics of VCG were used to construct the VCG tensor containing the local and the spatiotemporal information. The VCG tensor was compressed in the time dimension based on Tucker decomposition to remove redundant information and extract the local spatiotemporal features. The features were fed back to the TreeBagger classifier. RESULTS: The proposed method achieved a total accuracy of 99.80% for 11 types of MI on the benchmark Physikalisch-Technische Bundesanstalt database. The area under the receiver operating characteristic curves and precision-recall curves of each kind of VCG signal was more than 0.88. CONCLUSION: The proposed algorithm effectively realized the classification of normal and 11 categories of MI using VCG. SIGNIFICANCE: Therefore, this study provides new ideas for the intelligent diagnosis of MI based on VCG.


Assuntos
Infarto do Miocárdio , Vetorcardiografia , Humanos , Vetorcardiografia/métodos , Infarto do Miocárdio/diagnóstico , Análise de Ondaletas , Algoritmos , Bases de Dados Factuais
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(4): 702-712, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36008334

RESUMO

ST segment morphology is closely related to cardiovascular disease. It is used not only for characterizing different diseases, but also for predicting the severity of the disease. However, the short duration, low energy, variable morphology and interference from various noises make ST segment morphology classification a difficult task. In this paper, we address the problems of single feature extraction and low classification accuracy of ST segment morphology classification, and use the gradient of ST surface to improve the accuracy of ST segment morphology multi-classification. In this paper, we identify five ST segment morphologies: normal, upward-sloping elevation, arch-back elevation, horizontal depression, and arch-back depression. Firstly, we select an ST segment candidate segment according to the QRS wave group location and medical statistical law. Secondly, we extract ST segment area, mean value, difference with reference baseline, slope, and mean squared error features. In addition, the ST segment is converted into a surface, the gradient features of the ST surface are extracted, and the morphological features are formed into a feature vector. Finally, the support vector machine is used to classify the ST segment, and then the ST segment morphology is multi-classified. The MIT-Beth Israel Hospital Database (MITDB) and the European ST-T database (EDB) were used as data sources to validate the algorithm in this paper, and the results showed that the algorithm in this paper achieved an average recognition rate of 97.79% and 95.60%, respectively, in the process of ST segment recognition. Based on the results of this paper, it is expected that this method can be introduced in the clinical setting in the future to provide morphological guidance for the diagnosis of cardiovascular diseases in the clinic and improve the diagnostic efficiency.


Assuntos
Eletrocardiografia , Máquina de Vetores de Suporte , Algoritmos , Arritmias Cardíacas , Bases de Dados Factuais , Eletrocardiografia/métodos , Humanos
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(1): 65-71, 2021 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-33899429

RESUMO

Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF. In addition, according to individual features and the dispersion between them, we applied genetic algorithm to make judgement and then input the feature with larger degree into support vector machine (SVM) to realize the accurate detection of inferior myocardial infarction. The proposed method in this paper was verified by Physikalisch-Technische Bundesanstalt (PTB) diagnostic electrocardio signal database and the accuracy rate was up to 98.33%. Conforming to the clinical diagnosis and the characteristics of specific changes in inferior myocardial infarction ECG signal, the proposed method can effectively make precise detection of inferior myocardial infarction by morphological features, and therefore is suitable to be applied in portable devices development for clinical promotion.


Assuntos
Infarto Miocárdico de Parede Inferior , Algoritmos , Bases de Dados Factuais , Eletrocardiografia , Humanos , Máquina de Vetores de Suporte
5.
Comput Methods Programs Biomed ; 203: 106024, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743488

RESUMO

BACKGROUND AND OBJECTIVE: Myocardial infarction (MI) is a critical acute ischemic heart disease, which can be early diagnosed by electrocardiogram (ECG). However, the most research of MI localization pay more attention on the specific changes in every ECG lead independent. In our study, the research envisages the development of a novel multi-lead MI localization approach based on the densely connected convolutional network (DenseNet). METHODS: Considering the correlation of the multi-lead ECG, the method using parallel 12-lead ECG, systematically exploited the correlation of the inter-lead signals. In addition, the dense connection of DenseNet enhanced the reuse of the feature information between the inter-lead and intra-lead signals. The proposed method automatically captured the effective pathological features, which improved the identification of MI. RESULTS: The experimental results based on PTB diagnostic ECG database showed that the accuracy, sensitivity and specificity of the proposed method was 99.87%, 99.84% and 99.98% for 11 types of MI localization. CONCLUSIONS: The proposed method has achieved superior results compared to other localization methods, which can be introduced into the clinical practice to assist the diagnosis of MI.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/diagnóstico por imagem , Sensibilidade e Especificidade
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(4): 539-549, 2018 08 25.
Artigo em Chinês | MEDLINE | ID: mdl-30124016

RESUMO

Electrocardiogram (ECG) is easily submerged in noise of the complex environment during remote medical treatment, and this affects the intelligent diagnosis of cardiovascular diseases. Considering this situation, this paper proposes an echo state network (ESN) denoising algorithm based on recursive least square (RLS) for ECG signals. The algorithm trains the ESN through the RLS method, and can automatically learn the deep nonlinear and differentiated characteristics in the noisy ECG data, and then the network can use these characteristic to separate out clear ECG signals automatically. In the experiment, the proposed method is compared with the wavelet transform with subband dependent threshold and the S-transform method by evaluating the signal-to-noise ratio and root mean square error. Experimental results show that the denoising accuracy is better and the low frequency component of the signal is well preserved. This method can effectively filter out complex noise and effectively preserve the effective information of ECG signals, which lays a foundation for the recognition of ECG signal feature waveform and the intelligent diagnosis of cardiovascular disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA