Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Circ Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.

2.
Int Immunopharmacol ; 130: 111741, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394887

RESUMO

BACKGROUND: Acute lung injury (ALI) is an inflammatory condition characterized by acute damage to lung tissue. SPAUTIN-1, recognized as a small molecule drug targeting autophagy and USP10/13, has been reported for its potential to inhibit oxidative stress damage in various tissue injuries. However, the role and mechanism of SPAUTIN-1 in ALI remain unclear. This study aims to elucidate the protective effects of SPAUTIN-1 on ALI, with a particular focus on its role and mechanism in pulmonary inflammatory responses. METHODS: Lipopolysaccharides (LPS) were employed to induce inflammation-mediated ALI. Bleomycin was used to induce non-inflammation-mediated ALI. The mechanism of SPAUTIN-1 action was identified through RNA-Sequencing and subsequently validated in mouse primary cells. Tert-butyl hydroperoxide (TBHP) was utilized to create an in vitro model of lung epithelial cell oxidative stress with MLE-12 cells. RESULTS: SPAUTIN-1 significantly mitigated LPS-induced lung injury and inflammatory responses, attenuated necroptosis and apoptosis in lung epithelial cells, and inhibited autophagy in leukocytes and epithelial cells. However, SPAUTIN-1 exhibited no significant effect on bleomycin-induced lung injury. RNA-sequencing results demonstrated that SPAUTIN-1 significantly inhibited the NF-κB signaling pathway in leukocytes, a finding consistently confirmed by mouse primary cell assays. In vitro experiments further revealed that SPAUTIN-1 effectively mitigated oxidative stress injury in MLE-12 cells induced by TBHP. CONCLUSION: SPAUTIN-1 alleviated LPS-induced inflammatory injury by inhibiting the NF-κB pathway in leukocytes and protected epithelial cells from oxidative damage, positioning it as a potential therapeutic candidate for ALI.


Assuntos
Lesão Pulmonar Aguda , Benzilaminas , NF-kappa B , Quinazolinas , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Inflamação/metabolismo , Bleomicina/efeitos adversos , RNA/metabolismo
3.
Am J Pathol ; 194(5): 656-672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325552

RESUMO

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Miofibroblastos/metabolismo , Lesão Pulmonar/patologia , Proteômica , Pulmão/patologia , Fibrose , Hipóxia/patologia , Fibrose Pulmonar Idiopática/patologia , Bleomicina/toxicidade , Regeneração , Peptídeos e Proteínas de Sinalização Intracelular
4.
Ecotoxicol Environ Saf ; 272: 116094, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364759

RESUMO

Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.


Assuntos
Benzo(a)pireno , Lesão Pulmonar , Proteína Vermelha Fluorescente , Camundongos , Animais , Benzo(a)pireno/toxicidade , Proteínas Quinases/metabolismo , Necroptose , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Fibrose
5.
Signal Transduct Target Ther ; 8(1): 183, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37160887

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most exciting classes of targeted therapy agents for cancers with homologous recombination (HR) deficiency. However, many patients without apparent HR defects also respond well to PARP inhibitors/cisplatin. The biomarker responsible for this mechanism remains unclear. Here, we identified a set of ribosomal genes that predict response to PARP inhibitors/cisplatin in HR-proficient patients. PARP inhibitor/cisplatin selectively eliminates cells with high expression of the eight genes in the identified panel via DNA damage (ATM) signaling-induced pro-apoptotic ribosomal stress, which along with ATM signaling-induced pro-survival HR repair constitutes a new model to balance the cell fate in response to DNA damage. Therefore, the combined examination of the gene panel along with HR status would allow for more precise predictions of clinical response to PARP inhibitor/cisplatin. The gene panel as an independent biomarker was validated by multiple published clinical datasets, as well as by an ovarian cancer organoids library we established. More importantly, its predictive value was further verified in a cohort of PARP inhibitor-treated ovarian cancer patients with both RNA-seq and WGS data. Furthermore, we identified several marketed drugs capable of upregulating the expression of the genes in the panel without causing HR deficiency in PARP inhibitor/cisplatin-resistant cell lines. These drugs enhance PARP inhibitor/cisplatin sensitivity in both intrinsically resistant organoids and cell lines with acquired resistance. Together, our study identifies a marker gene panel for HR-proficient patients and reveals a broader application of PARP inhibitor/cisplatin in cancer therapy.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mutações Sintéticas Letais/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ribossomos
6.
Cell Mol Life Sci ; 80(6): 145, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166489

RESUMO

Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar progenitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression, signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of AT2 progenitors named "Injury-Activated Alveolar Progenitors" (IAAPs), which express low levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-l1). IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progenitor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.


Assuntos
Antígeno B7-H1 , Pulmão , Camundongos , Humanos , Animais , Antígeno B7-H1/metabolismo , Pulmão/metabolismo , Células Epiteliais Alveolares , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Diferenciação Celular/fisiologia
7.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225844

RESUMO

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Doxorrubicina , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição
8.
FASEB J ; 37(4): e22881, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934380

RESUMO

Obesity is a major contributing factor for metabolic-associated fatty liver disease (MAFLD). Fibroblast growth factor (FGF) 1 is the first paracrine FGF family member identified to exhibit promising metabolic regulatory properties capable of conferring glucose-lowering and insulin-sensitizing effect. This study explores the role and molecular underpinnings of FGF1 in obesity-associated hepatic steatosis. In a mouse high-fat diet (HFD)-induced MAFLD model, chronic treatment with recombinant FGF1(rFGF1) was found to effectively reduce the severity of insulin resistance, hyperlipidemia, and inflammation. FGF1 treatment decreased lipid accumulation in the mouse liver and palmitic acid-treated AML12 cells. These effects were associated with decreased mature form SREBF1 expression and its target genes FASN and SCD1. Interestingly, we uncovered that rFGF1 significantly induced IGFBP2 expression at both mRNA and protein levels in HFD-fed mouse livers and cultured hepatocytes treated with palmitic acid. Adeno-associated virus-mediated IGFBP2 suppression significantly diminished the therapeutic benefit of rFGF1 on MAFLD-associated phenotypes, indicating that IGFBP2 plays a crucial role in the FGF1-mediated reduction of hepatic steatosis. Further analysis revealed that rFGF1 treatment reduces the recruitment of DNA methyltransferase 3 alpha to the IGFBP2 genomic locus, leading to decreased IGFBP2 gene methylation and increased mRNA and protein expression. Collectively, our findings reveal FGF1 modulation of lipid metabolism via epigenetic regulation of IGFBP2 expression, and unravel the therapeutic potential of the FGF1-IGFBP2 axis in metabolic diseases associated with obesity.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Resistência à Insulina , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina , Hepatopatia Gordurosa não Alcoólica , Obesidade , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Epigênese Genética , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Ácido Palmítico/farmacologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Recombinantes/farmacologia , Mobilização Lipídica
9.
Cancer Med ; 12(5): 5979-5993, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329620

RESUMO

Epithelium-specific ETS transcription factor 1 (ESE1) has been implicated in epithelial homeostasis, inflammation, as well as tumorigenesis, and cancer progression. However, numerous studies have reported contradictory roles-as an oncogene or a tumor suppressor of ESE1 in different cancers, and its function in the development and progression of pancreatic ductal adenocarcinoma (PDAC) has remained largely unexplored. Herein, we report that ESE1 was found upregulated in primary PDAC compared to normal pancreatic tissue, but high expression of ESE1 correlated to better relapse-free survival in patients with PDAC. Interestingly, ESE1 was found to exhibit dual roles in regulation of malignant properties of PDAC cells in that its overexpression promoted cell proliferation, whereas its downregulation enhanced epithelial-mesenchymal transition (EMT) phenotype. In the context of TGF-ß-induced EMT, ESE1 is markedly downregulated at post-transcriptional level, and reconstituted ESE1 expression partially reversed TGF-ß-induced EMT marker expression. Furthermore, we identify AGR2 as a novel transcriptional target of ESE1 that participates in TGF-ß-induced EMT in PDAC. Collectively, our findings reveal an ESE1/AGR2 axis that interacts with TGF-ß signaling to modulate EMT phenotype in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/genética , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas
10.
Cell Rep ; 41(12): 111863, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543133

RESUMO

In injured airways of the adult lung, epithelial progenitors are called upon to repair by nearby mesenchymal cells via signals transmitted through the niche. Currently, it is unclear whether repair is coordinated by the mesenchymal cells that maintain the niche or by the airway epithelial cells that occupy it. Here, we show that the spatiotemporal expression of Fgf10 by the niche is primarily orchestrated by the niche's epithelial occupants-both those that reside prior to, and following, injury. During homeostasis, differentiated airway epithelial cells secrete Sonic hedgehog (Shh) to inhibit Fgf10 expression by Gli1+ peribronchial mesenchymal cells in the niche. After injury, remaining epithelial cells produce Wnt7b to induce Fgf10 expression in airway smooth muscle cells in the niche. We find that this reliance on a common activator of airway epithelial stem cells also allows for the recruitment of remote stem cell populations when local populations have been exhausted.


Assuntos
Proteínas Hedgehog , Células-Tronco Mesenquimais , Proteínas Hedgehog/metabolismo , Pulmão/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
11.
Cell Mol Life Sci ; 79(12): 609, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445537

RESUMO

The specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate. In this paper, we build upon our previously published work on the regulation of airway epithelial progenitors by fibroblast growth factor receptor 2b (FGFR2b) signalling during early (E12.5) and mid (E14.5) pseudoglandular stage lung development. Our results suggest that a significant proportion of AT2 and AT1 progenitors are lineage-flexible during late pseudoglandular stage development, and that lineage commitment is regulated in part by FGFR2b signalling. We have characterized a set of direct FGFR2b targets at E16.5 which are likely involved in alveolar lineage formation. These signature genes converge on a subpopulation of AT2 cells later in development and are downregulated in AT2 cells transitioning to the AT1 lineage during repair after injury in adults. Our findings highlight the extensive heterogeneity of pneumocytes by elucidating the role of FGFR2b signalling in these cells during early airway epithelial lineage formation, as well as during repair after injury.


Assuntos
Células Epiteliais Alveolares , Pulmão , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Células-Tronco , Animais , Camundongos , Desenvolvimento Embrionário , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Pulmão/embriologia , Linhagem da Célula
12.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333491

RESUMO

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Pulmão/metabolismo , Células-Tronco , Epitélio/fisiologia , Células Epiteliais/metabolismo
13.
Cells ; 11(15)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954241

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with dire consequences and in urgent need of improved therapies. Compelling evidence indicates that damage or dysfunction of AT2s is of central importance in the development of IPF. We recently identified a novel AT2 subpopulation characterized by low SFTPC expression but that is enriched for PD-L1 in mice. These cells represent quiescent, immature AT2 cells during normal homeostasis and expand upon pneumonectomy (PNX) and were consequently named injury-activated alveolar progenitors (IAAPs). FGF10 is shown to play critical roles in lung development, homeostasis, and injury repair demonstrated in genetically engineered mice. In an effort to bridge the gap between the promising properties of endogenous Fgf10 manipulation and therapeutic reality, we here investigated whether the administration of exogenous recombinant FGF10 protein (rFGF10) can provide preventive and/or therapeutic benefit in a mouse model of bleomycin-induced pulmonary fibrosis with a focus on its impact on IAAP dynamics. C57BL/6 mice and SftpcCreERT2/+; tdTomatoflox/+ mice aged 8-10 weeks old were used in this study. To induce the bleomycin (BLM) model, mice were intratracheally (i.t.) instilled with BLM (2 µg/g body weight). BLM injury was induced after a 7-day washout period following tamoxifen induction. A single i.t. injection of rFGF10 (0.05 µg/g body weight) was given on days 0, 7, 14, and 21 after BLM injury. Then, the effects of rFGF10 on BLM-induced fibrosis in lung tissues were assessed by H&E, IHC, Masson's trichrome staining, hydroxyproline and Western blot assays. Immunofluorescence staining and flow cytometry was used to assess the dynamic behavior of AT2 lineage-labeled SftpcPos (IAAPs and mature AT2) during the course of pulmonary fibrosis. We observed that, depending on the timing of administration, rFGF10 exhibited robust preventive or therapeutic efficacy toward BLM-induced fibrosis based on the evaluation of various pathological parameters. Flow cytometric analysis revealed a dynamic expansion of IAAPs for up to 4 weeks following BLM injury while the number of mature AT2s was drastically reduced. Significantly, rFGF10 administration increased both the peak ratio and the duration of IAAPs expansion relative to EpCAMPos cells. Altogether, our results suggest that the administration of rFGF10 exhibits therapeutic potential for IPF most likely by promoting IAAP proliferation and alveolar repair.


Assuntos
Fibrose Pulmonar , Animais , Bleomicina/uso terapêutico , Peso Corporal , Modelos Animais de Doenças , Fator 10 de Crescimento de Fibroblastos/farmacologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo
14.
Front Cell Dev Biol ; 10: 853003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646902

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3ß in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3ß animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene-referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3ß highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3ß and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.

15.
Mol Med ; 28(1): 73, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764933

RESUMO

BACKGROUND: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are devastating clinical disorders with high mortality, and for which more effective therapies are urgently needed. FGF1, the prototype member of the FGF family, is shown to exert protective effects against injurious stimuli in multiple disease models. Here we aimed to evaluate whether FGF1 pretreatment is protective against LPS-induced ALI and elucidate the potential underlying mechanisms. METHODS: For drug-treated groups, C57B/6 mice received a single i.p. injection of FGF1 (1 mg/kg) 1 h before the LPS challenge or not. To induce the ALI model, the mice were treated by intratracheal instillation of LPS (5 mg/kg). Then, histopathological changes in lung tissues were assessed by hematoxylin and eosin staining and transmission electron microscopy. ELISA and qPCR assays were used to detect pro-inflammatory cytokine levels in BALF and lung tissues, respectively. The total number of inflammatory cells (neutrophils and macrophages) in BALF were counted using the Wright-Giemsa method. The expressions of reactive oxygen species (ROS) and malondialdehyde (MDA) were measured using their respective kits. Western blot and immunostaining were used to evaluate the expressions of antioxidants (Nrf-2, HO-1, SOD2, GPX4, and Catalase), as well as the inflammatory and/or apoptosis-related factors (TLR4, NF-κB, and Cleaved- caspase 3). RESULTS: FGF1 pretreatment significantly ameliorated the LPS-induced histopathological changes, reduced lung wet/dry ratios, ROS and MDA levels, total BALF protein, inflammatory cell infiltration, proinflammatory cytokine levels, and significantly increased the expression of antioxidant proteins (Nrf-2, HO-1, Catalase, and SOD2). In addition, FGF1 pretreatment significantly reduced the expression of TLR4 and cleaved- caspase 3, inhibited NF-κB activation, and reduced LPS-induced cell apoptosis. CONCLUSIONS: Altogether, our results suggest that FGF1 pretreatment is protective against LPS-induced ALI through mediating anti-inflammatory and antioxidant effects, which may be attributed to the downregulation of TLR4 expression and inhibition of NF-κB activation, as well as promotion of antioxidant defenses. Therefore, FGF1 administration may prove beneficial in preventative strategies for ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Fator 1 de Crescimento de Fibroblastos/farmacologia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Catalase/metabolismo , Catalase/uso terapêutico , Citocinas/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Receptor 4 Toll-Like/metabolismo
16.
Eur J Neurosci ; 56(1): 3755-3778, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513862

RESUMO

Diabetes mellitus may cause tau protein hyperphosphorylation and neurodegeneration, but the exact mechanism by which diabetic conditions induce tau pathology remains unclear. Tau protein hyperphosphorylation is considered a major pathological hallmark of neurodegeneration and can be triggered by diabetes. Various tau-directed kinases, including P38, can be activated upon diabetic stress and induce tau hyperphosphorylation. Despite extensive research efforts, the exact tau specie(s) and kinases driving neurodegeneration in diabetes mellitus have not been clearly elucidated. We herein employed different techniques to determine the exact molecular mechanism of tau pathology triggered by diabetes in in vivo and in vitro models. We showed that diabetes-related stresses and glucose metabolism deficiency could induce cis P-tau (an early driver of the tau pathology) accumulation in the midbrain and corpus callosum of the diabetic mice models and cells treated with 2-deoxy-D-glucose, respectively. We found that the active phosphorylated level of P38 was increased in the treated cells and diabetic mice models. We observed that oxidative stress activated P38, which directly and indirectly drove tau pathology in the GABAergic and glutamatergic neurons of the midbrain of the diabetic mice after 96 h, which accumulated in the other neighboring brain areas after 2 months. Notably, P38 inhibition suppressed tau pathogenicity and risk-taking behaviors in the animal models after 96 h. The data establish P38 as a central mediator of diabetes mellitus-induced tau pathology. Our findings provide mechanistic insight into the consequences of this metabolic disorder on the nervous system.


Assuntos
Diabetes Mellitus Experimental , Proteínas tau , Animais , Diabetes Mellitus Experimental/metabolismo , Mesencéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas tau/metabolismo
18.
Cell Mol Life Sci ; 79(6): 302, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587837

RESUMO

Fibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. SftpcCreERT2; Fgfr2bflox/flox; tdTomatoflox/flox mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel SftpcLow lineage-traced population called "injury activated alveolar progenitors" or IAAPs. Upon continuous tamoxifen exposure for either 1 or 2 weeks to delete Fgfr2b, a shrinking of the AT2 population is observed. Mature AT2s exit the cell cycle, undergo apoptosis and fail to form alveolospheres in vitro. However, the lung morphometry appears normal, suggesting the involvement of compensatory mechanisms. In mutant lungs, IAAPs which escaped Fgfr2b deletion expand, display enhanced alveolosphere formation in vitro and increase drastically their AT2 signature, suggesting differentiation towards mature AT2s. Interestingly, a significant increase in AT2s and decrease in IAPPs occurs after a 1-week tamoxifen exposure followed by an 8-week chase period. Although mature AT2s partially recover their alveolosphere formation capabilities, the IAAPs no longer display this property. Single-cell RNA seq analysis confirms that AT2s and IAAPs represent stable and distinct cell populations and recapitulate some of their characteristics observed in vivo. Our results underscore the essential role played by Fgfr2b signaling in the maintenance of the AT2 lineage in the adult lung during homeostasis and suggest that the IAAPs could represent a new population of AT2 progenitors.


Assuntos
Pulmão , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Homeostase , Pulmão/metabolismo , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Tamoxifeno/farmacologia
19.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626630

RESUMO

Idiopathic lung fibrosis (IPF) is a fatal lung disease characterized by chronic epithelial injury and exhausted repair capacity of the alveolar compartment, associated with the expansion of cells with intermediate alveolar epithelial cell (AT2) characteristics. Using SftpcCreERT2/+: tdTomatoflox/flox mice, we previously identified a lung population of quiescent injury-activated alveolar epithelial progenitors (IAAPs), marked by low expression of the AT2 lineage trace marker tdTomato (Tomlow) and characterized by high levels of Pd-l1 (Cd274) expression. This led us to hypothesize that a population with similar properties exists in the human lung. To that end, we used flow cytometry to characterize the CD274 cell-surface expression in lung epithelial cells isolated from donor and end-stage IPF lungs. The identity and functional behavior of these cells were further characterized by qPCR analysis, in vitro organoid formation, and ex vivo precision-cut lung slices (PCLSs). Our analysis led to the identification of a population of CD274pos cells expressing intermediate levels of SFTPC, which was expanded in IPF lungs. While donor CD274pos cells initiated clone formation, they did not expand significantly in 3D organoids in AT2-supportive conditions. However, an increased number of CD274pos cells was found in cultured PCLS. In conclusion, we demonstrate that, similar to IAAPs in the mouse lung, a population of CD274-expressing cells exists in the normal human lung, and this population is expanded in the IPF lung and in an ex vivo PCLS assay, suggestive of progenitor cell behavior. CD274 function in these cells as a checkpoint inhibitor may be crucial for their progenitor function, suggesting that CD274 inhibition, unless specifically targeted, might further injure the already precarious lung epithelial compartment in IPF.


Assuntos
Antígeno B7-H1/metabolismo , Fibrose Pulmonar Idiopática , Células Epiteliais Alveolares/metabolismo , Animais , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Ligantes , Camundongos
20.
Ann Transl Med ; 10(3): 136, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284541

RESUMO

Background: The sphingosine 1-phosphate (S1P)/S1P receptor (S1pr) 1 signaling plays an essential role in regulating vascular integrity and angiogenesis. We have previously shown that cell-surface expression of endoglin (Eng) is sustained by S1P/S1pr1 signaling in endothelial cells (ECs). However, whether S1pr1 mediates Eng signaling, or vice versa, remains unknown. Methods: S1pr1 inhibitors were used to study whether pharmacological inhibition induces basal vascular leakage in vivo. An acute respiratory distress syndrome (ARDS) model was used to study whether S1pr1 inhibition evoked greater inflammation in lungs. A S1pr1 inhibitor, a bone morphogenetic protein 9 (BMP9) blocking antibody, or lentivirus-mediated expression of soluble extracellular domain of Eng (sEng) were used to test whether blocking both S1P/S1pr1 and BMP9/Eng signaling axes would impose any interaction in retinal angiogenesis. To clarify whether S1P and BMP9 function in a linear pathway, a study of trans-endothelial electrical resistance (TEER) measurement was carried out using a mouse islet EC line MS1; time course studies were executed to exam downstream effectors of S1P and BMP9 signaling pathways in ECs; two stable MS1 cell lines were generated, one with overexpression of human S1PR1 and the other with knockdown of Eng, to validate S1pr1 and Eng were the key players for the crosstalk. Inhibitor of extracellular regulated protein kinases (ERK) was used to check whether this signaling was involved in S1P-induced cell-surface localization of Eng. Results: The present study elucidated that S1pr1 and Eng are both pivotal for angiogenesis in the postnatal mouse retina, and that the activation of S1pr1 or Eng increases vascular barrier function. Activation of S1pr1 enhanced the phosphorylation of Smad family members 1, 5, and 8 (pSmad1/5/8), while the inhibition of S1pr1 reduced the levels of pSma1/5/8 induced by BMP9 treatment. Activation or loss of Eng did not affect S1pr1 signaling. Moreover, activation of ERK was involved in promoting EC-surface expression of Eng by S1pr1. Conclusions: Our data demonstrates for the first time that there exists a linear pathway of S1pr1-Eng signaling axis in ECs, which governs vascular homeostasis. Functional BMP9/Eng signaling requires S1P/S1pr1 activation, and S1pr1 signaling acts as a vascular protection mechanism upstream of Eng.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...