Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048249

RESUMO

Alcoholic fatty liver disease (AFLD) is caused by long-term heavy alcohol consumption; therefore, useful and practical methods for the prevention of AFLD are urgently needed. The edible flower of Dendrobium officinale contains diverse flavonoids, and has shown antioxidant activity as well as antihypertensive and anti-inflammatory effects. In this study, an AFLD model was established, the protective effect of D. officinale flower (DOF) ethanol extract on AFLD was evaluated, and its mechanisms were investigated by analyzing gut microbiota and short-chain fatty acids (SCFAs). DOF extract (DOFE) supplementation promoted alcohol metabolism, restored hepatic antioxidant capacity, alleviated oxidative stress, reduced inflammatory factor levels, and inhibited dyslipidemia induced by alcohol intake in chronic alcohol-exposed mice, especially in the high DOFE group. Moreover, DOFE supplementation increased the diversity, structure, and composition of the gut microbiota in mice, restored some of the abnormal SCFA levels caused by AFLD, and helped restore intestinal function. DOFE supplementation significantly increased the relative abundance of Akkermansia, suggesting that Akkermansia may be a potential target of the protective effect of DOFE. Therefore, DOFE supplementation to improve the composition of the gut microbiota may be an effective therapeutic strategy for the prevention of AFLD.

2.
Biomed Pharmacother ; 130: 110514, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707438

RESUMO

Processing of dark tea varieties, such as Fu brick tea, Liupao tea, Qianliang tea, and Qing brick tea, includes solid-state fermentation involving microorganisms. In this study, we analyzed the major chemical constituents of dark tea extracts and evaluated their modulatory effect on the gastrointestinal function in normal mice, including the improvement of gastrointestinal transit and intestinal microbial, as well as the attenuation of intestinal microbial dysbiosis and intestinal pathological damage, and the adjustment of immune function in antibiotic-treated mice. Substantial differences in major chemical constituents, including total polyphenols, total organic acids, water extract content, 18 free amino acids, gallic acid, and six tea catechins, were observed among Fu brick tea, Qianliang tea, Qing brick tea, and Liupao tea extracts. Extracts from the four dark tea varieties significantly promoted gastrointestinal transit and colonization of beneficial Bifidobacterium and Lactobacillus, and inhibited the growth of harmful Escherichia coli and Enterococcus in normal mice. In addition, Qianliang tea, Qing brick tea, and Liupao tea extracts significantly accelerated the reversal of the ampicillin sodium-induced pathological damage in the ileum, intestinal bacterial dysbiosis (Bifidobacterium, Lactobacillus, E. coli, and Enterococcus), and low immunity.


Assuntos
Trânsito Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Chá/química , Animais , Disbiose , Masculino , Camundongos
3.
Ecol Evol ; 6(16): 5854-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27547360

RESUMO

In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data-monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively. In the presence of water extract, the temperature rise of 2°C significantly inhibited the germination vigor and rate of P. Schrenkiana seed, and a temperature rise of 4°C significantly increased the inhibition to the seedling growth (P < 0.05). Among the three organic fractions, the low-polar fraction showed to be more phytotoxic than the other two fractions, causing significant inhibitory effects on the seed germination and growth even at low concentration of 0.1 mg/mL, and the inhibition effect was enhanced as temperature increased. The temperature rise significantly enhanced the promotion effect of DHAP, while the inhibition effect of temperature rise became less important with increasing concentration of DHAP. This investigation revealed that autotoxicity of P. schrenkiana was affected by the climate warming. As expected, it provided an insight into the mechanism and effectiveness of allelopathy in bridging the causal relationship between forest evolution and climate warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...