Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2294-2307, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044592

RESUMO

Extensive studies have been conducted on deicing nanomaterials to improve the cryoprotective effects on cells, tissues, and organs. The nanomaterials with different composition, sizes, and shapes can inhibit the formation and growth of ice crystals, thereby reducing the damage to the cryopreserved samples. In this study, the carbon composite particles (CCPs) with different sizes and shapes were prepared by the hydrothermal method. The results demonstrated that the cryoprotective effect of CCPs enhanced with the decrease in particle size. Compared with spherical CCPs, Janus nanoparticles and WSP nanoflower with special shapes demonstrated improved protective effects on cryopreserved cells. In addition, the combination of deicing micro/nanomaterials at appropriate concentrations with commercial cryoprotectants exerted improved cryoprotective effects on cells. The prepared deicing micro/nanomaterials can improve cell cryopreservation, demonstrating great application potential in biomedical research and cryopreservation.


Assuntos
Criopreservação , Crioprotetores , Nanoestruturas , Tamanho da Partícula , Crioprotetores/farmacologia , Crioprotetores/química , Criopreservação/métodos , Nanoestruturas/química , Humanos , Carbono/química , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos
2.
Adv Healthc Mater ; 10(23): e2101405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634194

RESUMO

Complicated vessels pervade almost all body tissues and influence the pathophysiology of the human body significantly. However, current fabrication strategies have limited success at multiscale vascular biofabrication. This study reports a methodology to fabricate soft vascularized tissue at centimeter scale using multimaterial bioprinting by a customized multistage-temperature-control printer. The printed constructs can be perfused via the branched endothelialized vasculatures to support the well-formed 3D capillary networks, which ensure cellular activities with sufficient nutrient supply and then mimic a mature and functional liver tissue in terms of synthesis of liver-specific proteins. Moreover, an inner and external pressure-bearing layer is printed to support the direct surgical anastomosis of the carotid artery to the jugular vein. In summary, a versatile platform to recapitulate the vasculature network is presented, in which case sustaining the optimal cellularization in engineered tissues is achievable.


Assuntos
Bioimpressão , Humanos , Fígado , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA