Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Emerg Microbes Infect ; : 2353298, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721691

RESUMO

With the atypical rise of Mycoplasma pneumoniae infection (MPI) in 2023, prompt studies are needed to determine the current epidemic features and risk factors with emerging trends of MPI to furnish a framework for subsequent investigations. This multicentre, retrospective study was designed to analyse the epidemic patterns of MPI before and after the COVID-19 pandemic, as well as genotypes and the macrolide resistance-associated mutations in MP sampled from pediatric patients in Southern China. Clinical data was collected from 133674 patients admitted into investigational hospitals from June 1, 2017, to November 30, 2023. Metagenomic next-generation sequencing (mNGS) data were retrieved based on MP sequence positive samples from 299 pediatric patients for macrolide resistance-associated mutations analysis. Pearson's chi-squared test was used to compare categorical variables between different time frames. The monthly average cases of pediatric common respiratory infection diseases were increased without enhanced public health measures after the pandemic, especially for influenza, respiratory syncytial virus infection, and MPI. The contribution of MPI to pneumoniae was similar to that in the outbreak in 2019. Compared mNGS data between 2019-2022 and 2023, the severity of MP did not grow stronger despite higher rates of macrolide-resistance hypervariable sites, including loci 2063 and 2064, were detected in childhood MP samples of 2023. Our findings indicated ongoing surveillance is necessary to understand the impact of post pandemic on MP transmission disruption on epidemic season and severity of clinical outcomes in different scenarios.

2.
Front Immunol ; 15: 1370707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596686

RESUMO

Background: Hypothyroidism, a prevalent endocrine disorder, carries significant implications for maternal and infant health, especially in the context of maternal hypothyroidism. Despite a gradual surge in recent research, achieving a comprehensive understanding of the current state, focal points, and developmental trends in this field remains challenging. Clarifying these aspects and advancing research could notably enhance maternal-infant health outcomes. Therefore, this study employs bibliometric methods to systematically scrutinize maternal hypothyroidism research, serving as a reference for further investigations. Objective: Through bibliometric analysis, this study seeks to unveil key research focus areas, developmental trends, and primary contributors in Maternal Hypothyroidism. The findings offer insights and recommendations to inform future research endeavors in this domain. Methods: Literature metrics analysis was performed on data retrieved and extracted from the Web of Science Core Collection database. The analysis examined the evolution and thematic trends of literature related to Maternal Hypothyroidism. Data were collected on October 28, 2023, and bibliometric analysis was performed using VOSviewer, CiteSpace, and the Bibliometrix software package, considering specific characteristics such as publication year, country/region, institution, authorship, journals, references, and keywords. Results: Retrieved from 1,078 journals, 4,184 articles were authored by 18,037 contributors in 4,580 institutions across 113 countries/regions on six continents. Maternal Hypothyroidism research publications surged from 44 to 310 annually, a 604.54% growth from 1991 to 2022. The USA (940 articles, 45,233 citations), China Medical University (82 articles, 2,176 citations), and Teng, Weiping (52 articles, 1,347 citations) emerged as the most productive country, institution, and author, respectively. "Thyroid" topped with 233 publications, followed by "Journal of Clinical Endocrinology & Metabolism" (202) with the most citations (18,513). "Pregnancy" was the most cited keyword, with recent high-frequency keywords such as "outcome," "gestational diabetes," "iodine intake," "preterm birth," "guideline," and "diagnosis" signaling emerging themes in Maternal Hypothyroidism. Conclusions: This study unveils developmental trends, global collaboration patterns, foundational knowledge, and emerging frontiers in Maternal Hypothyroidism. Over 30 years, research has predominantly focused on aspects like diagnosis, treatment guidelines, thyroid function during pregnancy, and postpartum outcomes, with a central emphasis on the correlation between maternal and fetal health.


Assuntos
Hipotireoidismo , Nascimento Prematuro , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Hipotireoidismo/epidemiologia , Autoria , Bibliometria
3.
Adv Sci (Weinh) ; : e2308522, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582526

RESUMO

Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging. Here, computational modeling and molecular dynamics simulations are employed to design a chemical strategy that enhances the CH-π interaction between glycans and proteins by genetically incorporating electron-rich tryptophan derivatives into a lectin PhoSL, which specifically recognizes core fucosylated N-linked glycans. This significantly enhances the binding affinity of PhoSL with the core fucose ligand and enables sensitive detection and imaging of core fucosylated glycans in vitro and in xenograft tumors in mice. Further, the study showed that this strategy is applicable to improve the binding affinity of GafD lectin for N-acetylglucosamine-containing glycans. The approach thus provides a general and effective way to manipulate glycan-protein recognition for glycoscience applications.

4.
Front Genet ; 15: 1366917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482385

RESUMO

Mapping genetic variations to phenotypic variations poses a significant challenge, as mutations often combine unexpectedly, diverging from assumed additive effects even in the same environment. These interactions are known as epistasis or genetic interactions. Sign epistasis, as a specific type of epistasis, involves a complete reversal of mutation effects within altered genetic backgrounds, presenting a substantial hurdle to phenotype prediction. Despite its importance, there is a limited systematic overview of the mechanistic causes of sign epistasis. This review explores the mechanistic causes, highlighting its occurrence in signalling cascades, peaked fitness landscapes, and physical interactions. Moving beyond theoretical discussions, we delve into the practical applications of sign epistasis in agriculture, evolution, and antibiotic resistance. In conclusion, this review aims to enhance the comprehension of sign epistasis and molecular dynamics, anticipating future endeavours in systematic biology engineering that leverage the knowledge of sign epistasis.

5.
Mol Genet Genomic Med ; 12(3): e2399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439578

RESUMO

BACKGROUND: Nephronophthisis (NPHP) is a genetically heterogeneous disease that can lead to end-stage renal disease (ESRD) in children. The TTC21B variant is associated with NPHP12 and mainly characterized by cystic kidney disease, skeletal malformation, liver fibrosis, and retinopathy. Affected patients range from children to adults. Some patients experience ESRD in infancy or early childhood, but clinical reports on neonatal patients are rare. We report a case of NPHP12 in a premature infant and analyze its genetic etiology. METHODS: Trio-whole exome sequencing analysis was performed on the patient and her parents; bioinformatics software was used to predict and analyze the hazards of the variants. Sanger sequencing was performed to verify variants. We calculated the free energy between mutant IFT139 and the IFT121-IFT122-IFT43 complex structure using molecular dynamics (MD). Finally, the clinical and genetic characteristics of patients with hotspot variant Cys518Arg were reviewed. RESULTS: Genetic analysis revealed compound-heterozyous TTC21B variants in the patient, c.497delA (p.Lys166fs*36) and c.1552T>C (p.Cys518Arg). Her father and mother had heterozygous c.497delA (p.Lys166fs*36) and heterozygous c.1552T>C (p.Cys518Arg), respectively. Cys518Arg represents a hotspot variant, and the MD calculation results show that this can reduce the structural stability of the IFT121-IFT122-IFT139-IFT43 complex structure. A literature review showed that Cys518Arg might lead to the early occurrence of ESRD. CONCLUSIONS: Compound-heterozygous TTC21B variants underlie the phenotype in this patient. Thus, Cys518Arg may be a hotspot variant in the Chinese population. Genetic testing should be recommended for NPHP in neonates and early infants.


Assuntos
Falência Renal Crônica , Doenças Renais Policísticas , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Povo Asiático , Recém-Nascido Prematuro , Cirrose Hepática
6.
Mater Horiz ; 11(9): 2153-2168, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38376908

RESUMO

Pseudorabies virus (PRV) is a highly contagious viral disease, which leads to severe financial losses in the breeding industry worldwide. Presently, PRV is mainly controlled using live attenuated and inactivated vaccines. However, these vaccines have an innate tendency to lose their structural conformation upon exposure to environmental and chemical stressors and cannot provide full protection against the emerging prevalent PRV variants. In this work, first, we synthesized aminated ZIF-7/8 nanoparticles (NPs), and then chemical bond-coated alginate dialdehyde (ADA, a type of dioxide alginate saccharide) on their surface via Schiff base reaction to obtain ZIF-7/8-ADA NPs. The as-fabricated ZIF-7/8-ADA NPs exhibited high stability, monodispersity and a high loading ratio of antigen. Furthermore, the ZIF-7/8-ADA NPs showed good biocompatibility in vitro and in vivo. Using ZIF-7/8-ADA NPs as an adjuvant and inactivated PRV as a model antigen, we constructed a PR vaccine through a simple mixture. The immunity studies indicated that ZIF-7/8-ADA induced an enhancement in the Th1/Th2 immune response, which was superior to that of the commercial ISA201, alum adjuvant and ZIF-7/8. Due to the pH-sensitive release of the antigen in lysosomes, the as-prepared PR vaccine subsequently accelerated the antigen presentation and improved the immune responses in vitro and in vivo. The results of PRV challenge using mice as the model demonstrated that ZIF-7/8-ADA achieved the same preventive effect as the commercial ISA201 and was much better than the alum adjuvant, and thus can serve as a promising delivery system and adjuvant to enhance humoral and cellular responses against PRV infection.


Assuntos
Adjuvantes Imunológicos , Alginatos , Estruturas Metalorgânicas , Nanopartículas , Animais , Alginatos/química , Alginatos/farmacologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Vacinas contra Pseudorraiva/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Portadores de Fármacos/química , Vacinação/métodos , Camundongos Endogâmicos BALB C , Feminino
7.
J Colloid Interface Sci ; 662: 786-795, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382363

RESUMO

Copper-based tandem catalysts are effective candidates for yielding multi-carbon (C2+) products in electrochemical reduction of carbon dioxide (CO2RR). However, these catalysts still face a significant challenge regarding in the low selectivity for the production of a specific product. In this study, we report a high selectivity of 77.8 %±2 % at -1.0 V (vs RHE) for the production of C2H4 by using a Cu88Ag12NW catalyst which is primarily prepared through a combined Cu-Ag co-deposition and wet chemical method, employing an attractive strategy focused on regulating the microenvironment over Cu-Ag nanowires. The experimental and computational studies show that the higher *CO coverage and lower intermediate adsorption energy are important reasons for achieving the high C2H4 selectivity of Cu88Ag12NW catalyst. Comsol simulation results indicate that dense nanowires exhibit a nano-limiting effect on OH- ions, thereby leading to an increase in local pH and promoting coupling reactions. The catalyst demonstrates no noticeable decrease in current density or selectivity even after 12 h of continuous operation. The Cu-Ag nanowire composite exhibits remarkable catalytic activity, superior faradaic efficiency, excellent stability, and easy synthesis, which highlights its significant potential for electro-reducing carbon dioxide into valuable products.

8.
J Glob Health ; 14: 05011, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271211

RESUMO

Background: With the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in schools and communities, clinical evidence is needed to determine the impact of the pandemic and public health interventions under the zero coronavirus disease policy on the occurrence of common infectious diseases and non-infectious diseases among children. Methods: The current study was designed to analyse the occurrence of common infectious diseases before and after the pandemic outbreak in southern China. Data was obtained for 1 801 728 patients admitted into children's hospitals in Guangzhou between January 2017 and July 2022. Regression analysis was performed for data analysis. Results: The annual occurrence of common paediatric infectious diseases remarkably decreased after the pandemic compared to the baseline before the pandemic and the monthly occurrence. Cases per month of common paediatric infectious diseases were significantly lower in five periods during the local outbreak when enhanced public health measures were in place. Cases of acute non-infectious diseases such as bone fractures were not reduced. Non-pharmaceutical interventions decreased annual and monthly cases of paediatric respiratory and intestinal infections during the coronavirus disease 2019 (COVID-19) pandemic, especially when enhanced public health interventions were in place. Conclusions: Our findings provide clinical evidence that public health interventions under the dynamic zero COVID policy in the past three years had significant impacts on the occurrence of common respiratory and intestinal infectious diseases among children and adolescents but little impact on reducing non-infectious diseases such as leukaemia and bone fracture.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças não Transmissíveis , Adolescente , Humanos , Criança , COVID-19/epidemiologia , SARS-CoV-2 , Saúde Pública , Políticas , China/epidemiologia
9.
Free Radic Biol Med ; 210: 13-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951283

RESUMO

Cystathionine-ß-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Animais , Humanos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Staphylococcus aureus/metabolismo , Cistationina , Glândulas Mamárias Animais/metabolismo , Inflamação , Sulfeto de Hidrogênio/metabolismo
10.
Placenta ; 145: 139-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134546

RESUMO

Placentae collected from elective terminations during the first trimester are commonly used as control samples in research. However, it is widely acknowledged that many complications of pregnancies can occur or originate during the early stage of gestation. This raises the question that the placentae collected from the first trimester may not accurately reflect normal placental conditions. In this study, 95 placentae were collected from elective terminations and histology was performed. Out of these, 53 placentae (56 %) exhibited the typical structure of placental villi, indicating normal development. However, 42 placentae (44 %) showed placental hydrops, with varying degrees of severity (mild, moderate, or severe). Placental hydrops has been linked to several complicated pregnancies in the later stages of gestation. Our findings suggest that the development of pregnancy pathologies could start in the first trimester, as observed by the presence of hydrops. Placental researchers should be aware of when using first-trimester placentae from termination as controls in studies. However, it remains unclear whether pathological morphologies resolve or ameliorate as the pregnancy progression or whether such placentae continue to have such pathology, but clinical symptoms/signs do not manifest.


Assuntos
Doenças Placentárias , Placenta , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Vilosidades Coriônicas , Edema
11.
Nature ; 623(7986): 397-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914940

RESUMO

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismo
12.
Int Immunopharmacol ; 124(Pt B): 111028, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857121

RESUMO

Mastitis is a common disease of dairy cows characterized by infiltration of leukocytes, especially neutrophils, resulting in increased permeability of the blood-milk barrier (BMB). Taurine, a functional nutrient, has been shown to have anti-inflammatory and antioxidant effects. Here, we investigated the regulatory effects and mechanisms of taurine on the complex immune network of the mammary gland in Streptococcus uberis (S. uberis) infection. We found that taurine had no direct effect on CXCL2-mediated neutrophil chemotaxis. However, it inhibited MAPK and NF-κB signalings by modulating the activity of TAK1 downstream of TLR2, thereby reducing CXCL2 expression in macrophages to reduce neutrophil recruitment in S. uberis infection. Further, the AMPK/Nrf2 signaling pathway was activated by taurine to help mitigate oxidative damage, apoptosis and disruption of tight junctions in mammary epithelial cells caused by hypochlorous acid, a strong oxidant produced by neutrophils, thus protecting the integrity of the mammary epithelial barrier. Taurine protects the BMB from damage caused by neutrophils via blocking the macrophage-CXCL2-neutrophil signaling axis and increasing the antioxidant capacity of mammary epithelial cells.


Assuntos
Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Humanos , Infiltração de Neutrófilos , Streptococcus , Mastite Bovina/tratamento farmacológico , Glândulas Mamárias Animais
13.
ACS Appl Mater Interfaces ; 15(40): 47628-47639, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751513

RESUMO

A novel chlorinated functional group-modified triphenylmethane derivative leveler BB1 is used to achieve superconformal electrodeposition in microvias. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to study the suppressing effect of BB1, while the convection-dependent adsorption of BB1 on the copper surface is analyzed by galvanostatic measurement, and a BB1 concentration window between 100 and 200 mg/L is beneficial for superfilling. The interactions among BB1, bis-(sodium sulfopropyl) disulfide (SPS), and poly(ethylene glycol) (PEG) are also investigated. Density functional theory (DFT) calculation and in situ Raman spectroscopy are coupled to study the suppression mechanism and synergistic suppression mechanism, namely, the adsorption effect between BB1 and copper substrate, as well as the coordination effect between the modified chlorinated functional group and Cu2+, is proposed. The copper layer becomes smoother and more compact with an increase in BB1 concentration, according to scanning electron microscopy (SEM) and atomic force microscopy (AFM), while X-ray diffraction (XRD) analysis shows that the introduction of BB1 is conducive to the formation of the copper (220) plane. Besides, the solution wettability is boosted by BB1. A copper interconnecting layer with high quality is achieved with 150 mg/L BB1, while the surface deposition thickness (SDT) is about 34 µm and filling percentages (FPs) for microvias with diameters of 100, 125, and 150 µm are 81.34, 82.72, and 81.39%, respectively.

14.
Structure ; 31(10): 1174-1183.e4, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37582356

RESUMO

Severe Plasmodium falciparum malaria infections are caused by microvascular sequestration of parasites binding to the human endothelial protein C receptor (EPCR) via the multi-domain P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands. Using cryogenic electron microscopy (Cryo-EM) and PfEMP1 sequence diversity analysis, we found that group A PfEMP1 CIDRα1 domains interact with the adjacent DBLα1 domain through central, conserved residues of the EPCR-binding site to adopt a compact conformation. Upon EPCR binding, the DBLα1 domain is displaced, and the EPCR-binding helix of CIDRα1 is turned, kinked, and twisted to reach a rearranged, stable EPCR-bound conformation. The unbound conformation and the required transition to the EPCR-bound conformation may represent a conformational masking mechanism of immune evasion for the PfEMP1 family.

15.
Small ; 19(30): e2302151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191229

RESUMO

Enhancing alkaline urea oxidation reaction (UOR) activity is essential to upgrade renewable electrolysis systems. As a core step of UOR, proton-coupled electron transfer (PCET) determines the overall performance, and accelerating its kinetic remains a challenge. In this work, a newly raised electrocatalyst of NiCoMoCuOx Hy with derived multi-metal co-doping (oxy)hydroxide species during electrochemical oxidation states is reported, which ensures considerable alkaline UOR activity (10/500 mA cm-2 at 1.32/1.52 V vs RHE, respectively). Impressively, comprehensive studies elucidate the correlation between the electrode-electrolyte interfacial microenvironment and the electrocatalytic urea oxidation behavior. Specifically, NiCoMoCuOx Hy featured with dendritic nanostructure creates a strengthened electric field distribution. This structural factor prompts the local OH- enrichment in electrical double layer (EDL), so that the dehydrogenative oxidation of the catalyst is directly reinforced to facilitate the subsequent PCET kinetics of nucleophilic urea, resulting in high UOR performance. In practical utilization, NiCoMoCuOx Hy -driven UOR coupled cathodic hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2 RR), and harvested high value-added products of H2 and C2 H4 , respectively. This work clarifies a novel mechanism to improve electrocatalytic UOR performance through structure-induced interfacial microenvironment modulation.

16.
J Colloid Interface Sci ; 638: 242-251, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738547

RESUMO

Zeolitic imidazole framework (ZIF)-derived iron-nitrogen-carbon (FeNC) materials are expected to be high-efficiency catalysts for oxygen reduction reaction (ORR). However, increasing the density of active sites while avoiding metal accumulation still faces significant challenges. Herein, solvent environment engineering is used to synthesize the FeNC containing dense Fe-Nx moieties by adjusting the solvent during the ZIF precursor synthesis process. Compared with methanol and water/methanol, the aqueous media can provide a more moderate Fe content for the ZIF precursor, which facilitates the construction of high-density Fe-Nx sites and prevent the appearance of iron-based nanoparticles during pyrolysis. Therefore, the FeNC(C) nanocubes synthesized in an aqueous media have the highest single atom Fe loading (0.6 at%) among the prepared samples, which presents excellent oxygen reduction properties and durability under alkaline and acidic conditions. The advantage of FeNC(C) is proven in Zn-air batteries, with outstanding performance and long-term stability.


Assuntos
Metanol , Zeolitas , Solventes , Água , Ferro , Oxigênio , Zinco
17.
ACS Infect Dis ; 9(2): 378-387, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36688646

RESUMO

Adjuvants are essential for the induction of robust immune responses against vaccine antigens. Small-molecule TLR7 agonists hold high potential for this purpose. In this communication, imiquimod (IMQ) bearing a cholesterol lipid moiety derivative, IMQ-Chol, was designed and synthesized as a vaccine adjuvant, which could release parent IMQ molecules in aqueous conditions via amide bond hydrolysis. We performed a series of immunological evaluations by cooperating with the inactivated foot-and-mouth disease virus (FMDV). All of the results confirmed that IMQ-Chol could stimulate the body for a prolonged time to produce strong humoral and cellular immunity with a balanced Th1/Th2 immune response through a TLR7-related MAPK pathway. In addition, the results of the proof-of-concept vaccine indicated IMQ-Chol had a good effect on preventing and treating FMD in pigs.


Assuntos
Vírus da Febre Aftosa , Receptor 7 Toll-Like , Animais , Suínos , Imiquimode/farmacologia , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos
18.
Int Immunopharmacol ; 114: 109536, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700763

RESUMO

Mastitis affects animal welfare and causes economic losses in the dairy industry. It is caused mainly by bacterial pathogens, among which Escherichia coli (E. coli) is one of the prominent causative agents. To treat bovine mastitis, antibiotics were widely used. However, their extensive and uncontrolled use has led to the emergence of multi-antibiotic-resistant strains. Indeed, a superbug of E. coli was successfully isolated from a mastitis-suffering cow and found resistant to at least 10 antibiotics. Therefore, the development of a universal therapeutic agent used as a replacement for the antibiotic is an immediate need in the dairy industry. To do so, we examined whether chlorogenic acid (CGA), a natural and herbal extract, could be a perfect alternative in mastitis treatment. In this study, we observed that the combination of CGA and antibiotic had an additive or synergistic effect; CGA fought against the superbug by directly targeting bacterial cell wall and membrane; CGA can significantly alleviate the mastitis caused by the superbug E. coli via its antimicrobial, antioxidant and anti-inflammatory activities. Collectively, these data indicated that CGA had a true potential to replace antibiotics during mastitis treatment.


Assuntos
Infecções por Escherichia coli , Mastite Bovina , Animais , Bovinos , Feminino , Humanos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Mastite Bovina/tratamento farmacológico
19.
J Colloid Interface Sci ; 631(Pt B): 173-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401925

RESUMO

Enhancing the electrocatalytic oxygen evolution reaction (OER) performance is essential to realize practical energy-saving water electrolysis and CO2 electroreduction. Herein, we report a bimetallic co-doping engineering to design and fabricate nickel-cobalt-iron collaborative oxy-hydroxide on nickel foam that labeled as NiCoFeOxHy-NF. As expected, NiCoFeOxHy-NF exhibits an outstanding OER activity with current density of 10 mA cm-2 at 194 mV, Tafel slope of 53 mV dec-1, along with the robust long-term stability, which is significantly better than bimetallic NiCo and NiFe combinations. Comprehensive computational simulations and characterizations jointly unveil that the twisted ligand environment induced by heteroatoms ensures the balance strength between the metal-oxygen hybrid orbital states and the oxidized intermediates adsorption, thus lowering the oxygen cycling energy barriers for overcoming the sluggish OER kinetics. Moreover, a novel phase transition behavior is monitored by in-situ Raman spectra under OER operating conditions, which facilitates electron-mass transfer as well as boosts the exposure of activity sites. For practical applications, Ni2P-NF || NiCoFeOxHy-NF and Cu || NiCoFeOxHy-NF couples were constructed to realize high-efficiency water electrolysis and CO2 electrochemical reduction for the production of valuable H2 and C2H4, respectively. This work elucidates a novel mechanism by which bimetallic co-doping improves the electrocatalytic OER activity of nickel-based hydroxides.

20.
ACS Appl Mater Interfaces ; 14(49): 54758-54768, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454203

RESUMO

Enhancing the intrinsic activity and modulating the electrode-electrolyte interface microenvironment of nickel-based candidates are essential for breaking through the sluggish kinetics limitation of the oxygen evolution reaction (OER). Herein, a ternary nickel-cobalt-iron solid solution with delicate hollow nanoarrays architecture (labeled as NiCoFe-NTs) was designed and fabricated via a ZnO-templated electrodeposition strategy. Owing to the synergistic nanostructure and composition feature, NiCoFe-NT presents desirable alkaline OER performance, with a η10 and η500 of 187 and 310 mV, respectively, along with favorable long-term durability. In-depth analyses identify the heterogeneous nickel-based (oxy)hydroxide species derived from the oxidative reconstruction acting as an active contributor for oxygen evolution. Impressively, the regulatory mechanism of the catalytic performance by a rationally designed nanostructure was elucidated by compressive analyses; that is, the faster gas release processes induced by nanotube arrays can modulate the heterogeneous interface states during OER, which effectively facilitates the electrochemical charge-mass transfer to promote the reaction kinetics. To assess the practical feasibility, an alkaline water electrolyzer and a CO2 electrochemical reduction flow cell were constructed by coupling the anodic NiCoFe-NTs and cathodic nickel phosphides (Ni2P-NF) and metallic Cu electrocatalysts, respectively, both of which achieved high-efficiency operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...