Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(28): e2400816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767180

RESUMO

Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.

2.
Food Chem ; 452: 139543, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735107

RESUMO

Malachite green (MG), a widely used antiparasitic agent, poses health risks to human due to its genotoxic and carcinogenic properties. Herein, a stable dual-emission fluoroprobe of carbon dots/copper nanoclusters is prepared for highly selective detection of MG based on the inner filter effect. This probe exhibits characteristic emission bands at 435 and 625 nm when excited at 376 nm. After adding MG, the both emission signals were significantly quenched, and the ratio of fluorescence intensity (F435/F625) was linearly related to the concentration of MG in the range of 0.05-40 µmol L-1 with a limit of detection of 18.2 nmol L-1. Meanwhile, the two signals exhibit linear relationships with the concentration of MG, respectively, and the corresponding detection results were consistent. The fluoroprobe was successfully used for the detection of MG in fish samples with the recoveries ranging from 96.0% to 103.8% and a relative standard deviation of <3.3%.


Assuntos
Carbono , Cobre , Peixes , Nanocompostos , Pontos Quânticos , Corantes de Rosanilina , Corantes de Rosanilina/química , Corantes de Rosanilina/análise , Cobre/química , Cobre/análise , Animais , Pontos Quânticos/química , Carbono/química , Nanocompostos/química , Espectrometria de Fluorescência/métodos , Contaminação de Alimentos/análise , Limite de Detecção , Fluorescência , Corantes Fluorescentes/química
3.
Adv Sci (Weinh) ; 11(24): e2309559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639394

RESUMO

Idiopathic short stature (ISS) is a common childhood condition with largely unknown underlying causes. Recent research highlights the role of circulating exosomes in the pathogenesis of various disorders, but their connection to ISS remains unexplored. In the experiments, human chondrocytes are cocultured with plasma exosomes from ISS patients, leading to impaired chondrocyte growth and bone formation. Elevated levels of a specific long non-coding RNA (lncRNA), ISSRL, are identified as a distinguishing factor in ISS, boasting high specificity and sensitivity. Silencing ISSRL in ISS plasma exosomes reverses the inhibition of chondrocyte proliferation and bone formation. Conversely, overexpression of ISSRL in chondrocytes impedes their growth and bone formation, revealing its mechanism of action through the miR-877-3p/GZMB axis. Subsequently, exosomes (CT-Exo-siISSRL-oeGH) with precise cartilage-targeting abilities are engineered, loaded with customized siRNA for ISSRL and growth hormone. This innovative approach offers a therapeutic strategy to address ISS by rectifying abnormal non-coding RNA expression in growth plate cartilage and delivering growth hormone with precision to promote bone growth. This research provides valuable insights into ISS diagnosis and treatment, highlighting the potential of engineered exosomes.


Assuntos
Condrócitos , Exossomos , Lâmina de Crescimento , Nanopartículas , RNA Interferente Pequeno , Humanos , Exossomos/metabolismo , Exossomos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Lâmina de Crescimento/metabolismo , Condrócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/tratamento farmacológico , Criança , Feminino , Masculino
4.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
5.
ACS Nano ; 18(3): 2520-2530, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197377

RESUMO

Stretchable flexible strain sensors based on conductive elastomers are rapidly emerging as a highly promising candidate for popular wearable flexible electronic and soft-mechanical sensing devices. However, due to the intrinsic limitations of low fidelity and high hysteresis, existing flexible strain sensors are unable to exploit their full application potential. Herein, a design strategy for a successive three-dimensional crack conductive network is proposed to cope with the uncoordinated variation of the output resistance signal arising from the conductive elastomer. The electrical characteristics of the sensor are dominated by the successive crack conductive network through a greater resistance variation and a concise sensing mechanism. As a result, the developed elastomer bionic strain sensors exhibit excellent sensing performance in terms of a smaller overshoot response, a lower hysteresis (∼2.9%), and an ultralow detection limit (0.00179%). What's more, the proposed strategy is universal and applicable to many conductive elastomers with different conductive fillers (including 0-D, 1-D, and 2-D conductive fillers). This approach improves the sensing signal accuracy and reliability of conductive elastomer strain sensors and holds promising potential for various applications in the fields of e-skin and soft robotic systems.

6.
Int J Biol Macromol ; 258(Pt 2): 128876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134987

RESUMO

Ultra-high molecular weight polyethylene (UHMWPE) fibers are broadly applied in lightweight and high-strength composite fiber materials. However, the development of UHMWPE fibers is limited by their smooth and chemically inert surfaces. To address the issues, a modified UHMWPE fibers material has been fabricated through the chelation reaction between Cu2+ and chitosan coatings within the surface of fibers after plasma treatment, which is inspired by the hardening mechanism, a crosslinked network between metal ions and proteins/polysaccharides of the tips and edges in arthropod-specific cuticular tools. The coatings improve the surface wettability and interfacial bonding ability, which are beneficial in extending the application range of UHMWPE fibers. More importantly, compared to the unmodified UHMWPE fiber cloths, the tensile property of the modified fiber cloths is increased by 18.89% without damaging the strength, which is infrequent in modified UHMWPE fibers. Furthermore, the interlaminar shear strength and fracture toughness of the modified fibers laminate are increased by 37.72% and 135.90%, respectively. These improvements can be attributed to the synergistic effects between the surface activity and the tiny bumps of the modified UHMWPE fibers. Hence, this work provides a more straightforward and less damaging idea of fiber modification for manufacturing desirable protective and medical materials.


Assuntos
Quitosana , Cobre , Teste de Materiais , Polietilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA