RESUMO
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both inâ vitro and inâ vivo. Total flavonoids and total phenolic acids content in P30K were 244.6â mg/g and 275.8â mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30â µg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11ß-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Assuntos
Própole , Humanos , Própole/farmacologia , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , BrasilRESUMO
An effective identification method for detecting illegal goods involving raw tobacco material is crucial for tobacco monopolies to conduct surveillance. We developed Nicotiana-specific molecular markers to determine whether seized goods contain raw tobacco material. The sequence data for genes related to the nicotine metabolism pathway and genomic data from the public Solanaceae database were used to establish Nicotiana-specific molecular markers. These markers were determined by experimentally verifying 17 types of nontobacco plant material and 91 types of tobacco material belonging to 11 sections of 3 subgenera. Two reliable Nicotiana-specific markers, Ntsp027 and Ntsp151, were selected from among the 209 newly developed markers. The results indicated that the primers corresponding to these two markers can amplify the target fragments in the 91 types of Nicotiana material without amplification of any PCR products in the 17 types of non-Nicotiana material. Furthermore, utilizing the marker Ntsp151, we verified the efficacy of the loop-mediated isothermal amplification (LAMP) assay in authenticating tobacco material. The identification of 21 tea-cigarette products via the combination of GCâMS, a Nicotiana-specific molecular marker and LAMP methods underscores the utility of Nicotiana-specific DNA markers in determining whether illegal goods contain raw tobacco material. Our results indicate an impressive accuracy rate of 100%, which is consistent with the reliability assessment, underscoring the accuracy of these markers in effectively identifying tobacco material. Our findings can significantly augment the capacity for surveillance and anticounterfeiting efforts by aiding the fight against illicit trade and ensuring the integrity of all tobacco-related products in the market.
RESUMO
BACKGROUND: Unsubstantiated concerns have been raised on the potential correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infertility, leading to vaccine hesitancy in reproductive-aged population. Herein, we aim to evaluate the impact of inactivated SARS-CoV-2 vaccination on embryo ploidy, which is a critical indicator for embryo quality and pregnancy chance. METHODS: This was a retrospective cohort study of 133 patients who underwent preimplantation genetic testing for aneuploidy (PGT-A) cycles with next-generation sequencing technology from June 1st 2021 to March 17th 2022 at a tertiary-care medical center in China. Women fully vaccinated with two doses of Sinopharm or Sinovac inactivated vaccines (n = 66) were compared with unvaccinated women (n = 67). The primary outcome was the euploidy rate per cycle. Multivariate linear and logistic regression analyses were performed to adjust for potential confounders. RESULTS: The euploidy rate was similar between vaccinated and unvaccinated groups (23.2 ± 24.6% vs. 22.6 ± 25.9%, P = 0.768), with an adjusted ß of 0.01 (95% confidence interval [CI]: -0.08-0.10). After frozen-thawed single euploid blastocyst transfer, the two groups were also comparable in clinical pregnancy rate (75.0% vs. 60.0%, P = 0.289), with an adjusted odds ratio of 6.21 (95% CI: 0.76-50.88). No significant associations were observed between vaccination and cycle characteristics or other laboratory and pregnancy outcomes. CONCLUSIONS: Inactivated SARS-CoV-2 vaccination had no detrimental impact on embryo ploidy during in vitro fertilization treatment. Our finding provides further reassurance for vaccinated women who are planning to conceive. Future prospective cohort studies with larger datasets and longer follow-up are needed to confirm the conclusion.
Assuntos
COVID-19 , Diagnóstico Pré-Implantação , Adulto , Aneuploidia , Blastocisto , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Fertilização in vitro , Testes Genéticos , Humanos , Ploidias , Gravidez , Taxa de Gravidez , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , VacinaçãoRESUMO
Pancreatic cancer (PC) is one of the malignant tumors with the worst prognosis worldwide because of a lack of early diagnostic markers and efficient therapies. Integrin, beta-like 1 (ITGBL1) is a ß-integrin-related extracellular matrix protein and is reported to promote progression of some types of cancer. Nevertheless, the function of ITGBL1 in PC is still not clear. Herein, we found that ITGBL1 was highly expressed in PC tissues compared to normal tissues (P<0.05) and PC patients with higher TGBL1 expression showed worse prognosis. PANC-1 and AsPC-1 cells were used for gain/loss-of-function experiments. We found that ITGBL1-silenced cells exhibited decreased proliferation, migration, and invasion abilities and delayed cell cycle, whereas ITGBL1 overexpression reversed these malignant behaviors. ITGBL1 was also demonstrated to activate the TGF-ß/Smad pathway, a key signaling pathway in PC progression. Additionally, ITGBL1 expression was found to be suppressed by a suppressor of PC progression, c-Jun dimerization protein 2 (JDP2). Results of dual-luciferase assay indicated that transcription factor JDP2 could inhibit TGBL1 promoter activity. ITGBL1 overexpression inversed the effects of JDP2 up-regulation on cell function. Collectively, we concluded that ITGBL1 may be transcriptionally suppressed by JDP2 and promote PC progression through the TGF-ß/Smad pathway, indicating that ITGBL1 may have therapeutic potential for the treatment of PC.
Assuntos
Integrina beta1 , Neoplasias Pancreáticas , Proteínas Repressoras , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Humanos , Integrina beta1/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
INTRODUCTION: Among all immune cells, natural killer (NK) cells play an important role as the first line of defense against tumor. The purpose of our study is to observe whether the NK cell counts can predict the overall survival of patients with hepatocellular carcinoma (HCC). METHODS: To develop a novel model, from January 2010 to June 2015, HCC patients enrolled in Beijing Ditan hospital were divided into training and validation cohort. Cox multiple regression analysis was used to analyze the independent risk factors for 1-year, 3-year and 5-year overall survival (OS) of patients with HCC, and the nomogram was used to establish the prediction model. In addition, the decision tree was established to verify the contribution of NK cell counts to the survival of patients with HCC. RESULTS: The model used in predicting overall survival of HCC included six variables (namely, NK cell counts, albumin (ALB) level, alpha-fetoprotein (AFP) level, portal vein tumor thrombus (PVTT), tumor number and treatment). The C-index of nomogram model in HCC patients predicting 1-year, 3-year and 5-year overall survival was 0.858, 0.788 and 0.782 respectively, which was higher than tumor-lymph node-metastasis (TNM) staging system, Okuda, model for end-stage liver disease (MELD), MELD-Na, the Chinese University Prognostic Index (CUPI) and Japan Integrated Staging (JIS) scores (p < 0.001). The decision tree showed the specific 5-year OS probability of HCC patients under different risk factors, and found that NK cell counts were the third in the column contribution. CONCLUSIONS: Our study emphasizes the utility of NK cell counts for exploring interactions between long-term survival of HCC patients and predictor variables.
Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Contagem de Células , Humanos , Neoplasias Hepáticas/patologia , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de DoençaRESUMO
Pancreatic cancer (PC) is one of the malignant tumors with the worst prognosis worldwide because of a lack of early diagnostic markers and efficient therapies. Integrin, beta-like 1 (ITGBL1) is a β-integrin-related extracellular matrix protein and is reported to promote progression of some types of cancer. Nevertheless, the function of ITGBL1 in PC is still not clear. Herein, we found that ITGBL1 was highly expressed in PC tissues compared to normal tissues (P<0.05) and PC patients with higher TGBL1 expression showed worse prognosis. PANC-1 and AsPC-1 cells were used for gain/loss-of-function experiments. We found that ITGBL1-silenced cells exhibited decreased proliferation, migration, and invasion abilities and delayed cell cycle, whereas ITGBL1 overexpression reversed these malignant behaviors. ITGBL1 was also demonstrated to activate the TGF-β/Smad pathway, a key signaling pathway in PC progression. Additionally, ITGBL1 expression was found to be suppressed by a suppressor of PC progression, c-Jun dimerization protein 2 (JDP2). Results of dual-luciferase assay indicated that transcription factor JDP2 could inhibit TGBL1 promoter activity. ITGBL1 overexpression inversed the effects of JDP2 up-regulation on cell function. Collectively, we concluded that ITGBL1 may be transcriptionally suppressed by JDP2 and promote PC progression through the TGF-β/Smad pathway, indicating that ITGBL1 may have therapeutic potential for the treatment of PC.
RESUMO
BACKGROUND: Unsubstantiated concerns have been raised on the potential correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infertility, leading to vaccine hesitancy in reproductive-aged population. Herein, we aim to evaluate the impact of inactivated SARS-CoV-2 vaccination on embryo ploidy, which is a critical indicator for embryo quality and pregnancy chance. METHODS: This was a retrospective cohort study of 133 patients who underwent preimplantation genetic testing for aneuploidy (PGT-A) cycles with next-generation sequencing technology from June 1st 2021 to March 17th 2022 at a tertiary-care medical center in China. Women fully vaccinated with two doses of Sinopharm or Sinovac inactivated vaccines (n = 66) were compared with unvaccinated women (n = 67). The primary outcome was the euploidy rate per cycle. Multivariate linear and logistic regression analyses were performed to adjust for potential confounders. RESULTS: The euploidy rate was similar between vaccinated and unvaccinated groups (23.2 ± 24.6% vs. 22.6 ± 25.9%, P = 0.768), with an adjusted ß of 0.01 (95% confidence interval [CI]: -0.08-0.10). After frozen-thawed single euploid blastocyst transfer, the two groups were also comparable in clinical pregnancy rate (75.0% vs. 60.0%, P = 0.289), with an adjusted odds ratio of 6.21 (95% CI: 0.76-50.88). No significant associations were observed between vaccination and cycle characteristics or other laboratory and pregnancy outcomes. CONCLUSIONS: Inactivated SARS-CoV-2 vaccination had no detrimental impact on embryo ploidy during in vitro fertilization treatment. Our finding provides further reassurance for vaccinated women who are planning to conceive. Future prospective cohort studies with larger datasets and longer follow-up are needed to confirm the conclusion.
Assuntos
Humanos , Feminino , Gravidez , Adulto , Diagnóstico Pré-Implantação , COVID-19/prevenção & controle , Ploidias , Blastocisto , Fertilização in vitro , Testes Genéticos , Estudos Prospectivos , Estudos Retrospectivos , Vacinação , Taxa de Gravidez , Vacinas contra COVID-19 , SARS-CoV-2 , AneuploidiaRESUMO
OBJECTIVES: Many studies indicate that microRNAs (miRNAs) could be potential biomarkers for various diseases. The purpose of this study was to investigate the clinical value of serum exosomal miRNAs in systemic lupus erythematosus (SLE). METHODS: Serum exosomes were isolated from 38 patients with SLE and 18 healthy controls (HCs). The expression of miR-21, miR-146a and miR-155 within exosomes was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using receiver operating characteristic (ROC) curves, we evaluated the diagnostic value of exosomal miRNAs. RESULTS: Exosomal miR-21 and miR-155 were upregulated (p<0.01), whereas miR-146a expression (p<0.05) was downregulated in patients with SLE, compared to that in HCs. The expression of miR-21 (p<0.01) and miR-155 (p<0.05) was higher in SLE patients with lupus nephritis (LN) than in those without LN (non-LN). The analysis of ROC curves revealed that the expression of miR-21 and miR-155 showed a potential diagnostic value for LN. Furthermore, miR-21 (R=0.44, p<0.05) and miR-155 (R=0.33, p<0.05) were positively correlated with proteinuria. The expression of miR-21 was negatively associated with anti-SSA/Ro antibodies (R=-0.38, p<0.05), and that of miR-146a was negatively associated with anti-dsDNA antibodies (R=-0.39, p<0.05). CONCLUSIONS: These findings suggested that exosomal miR-21 and miR-155 expression levels may serve as potential biomarkers for the diagnosis of SLE and LN.
Assuntos
MicroRNA Circulante , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , MicroRNAs , Biomarcadores , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genéticaRESUMO
OBJECTIVES: Many studies indicate that microRNAs (miRNAs) could be potential biomarkers for various diseases. The purpose of this study was to investigate the clinical value of serum exosomal miRNAs in systemic lupus erythematosus (SLE). METHODS: Serum exosomes were isolated from 38 patients with SLE and 18 healthy controls (HCs). The expression of miR-21, miR-146a and miR-155 within exosomes was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using receiver operating characteristic (ROC) curves, we evaluated the diagnostic value of exosomal miRNAs. RESULTS: Exosomal miR-21 and miR-155 were upregulated (p<0.01), whereas miR-146a expression (p<0.05) was downregulated in patients with SLE, compared to that in HCs. The expression of miR-21 (p<0.01) and miR-155 (p<0.05) was higher in SLE patients with lupus nephritis (LN) than in those without LN (non-LN). The analysis of ROC curves revealed that the expression of miR-21 and miR-155 showed a potential diagnostic value for LN. Furthermore, miR-21 (R=0.44, p<0.05) and miR-155 (R=0.33, p<0.05) were positively correlated with proteinuria. The expression of miR-21 was negatively associated with anti-SSA/Ro antibodies (R=−0.38, p<0.05), and that of miR-146a was negatively associated with anti-dsDNA antibodies (R=−0.39, p<0.05). CONCLUSIONS: These findings suggested that exosomal miR-21 and miR-155 expression levels may serve as potential biomarkers for the diagnosis of SLE and LN.
Assuntos
Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , MicroRNAs , MicroRNA Circulante , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , BiomarcadoresRESUMO
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.
Assuntos
Secas , Florestas , Biomassa , Dióxido de Carbono/farmacologia , Simulação por Computador , Geografia , Modelos Teóricos , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Chuva , América do SulRESUMO
Background: Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids. Results: First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields. Conclusion: It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance.
Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Butanóis/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo , Seleção Genética , Temperatura , Ácido Eicosapentaenoico/metabolismo , Biomassa , Butanóis/toxicidade , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Estramenópilas/efeitos dos fármacos , Fermentação , MutaçãoRESUMO
Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.
Assuntos
Biomassa , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Clima Tropical , América do SulRESUMO
Background: Malate involves in the citrate/malate and transhydrogenase cycles to provide precursors for docosahexaenoic acid (DHA) synthesis. The optimal strategy was investigated for increasing DHA production in Schizochytrium species during fermentation. Results: DHA production increased by 47% and reached 5.51 g/L when 4 g malate/L was added during the rapid lipid accumulation stage in shake-flasks culture. Inducing effects of malate was further investigated through the analysis of three kinetic parameters, including specificcell growth rate(μ), specific glucose consumption rate (qGlu)and DHA formation rate (qDHA). DHA concentration was enhanced through a novel fed-batch strategy to a maximum value of 30.7 g/L, giving a yield of 0.103 g DHA/g glucose and a productivity of 284 mg L-1 h-1. Conclusion: A novel malate feeding strategy was developed that enhanced DHA yield and productivity of Schizochytrium species which may offer a desirable method for industrial applications.
Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Microalgas/metabolismo , Malatos/metabolismo , Cinética , Biomassa , Fermentação , NADPRESUMO
Amazon forests, which store â¼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.
Assuntos
Mudança Climática , Ecossistema , Biomassa , Brasil , Desidratação , Tecnologia de Sensoriamento Remoto , Estações do Ano , SoloRESUMO
This multicenter, randomized, open-label phase III trial (planned enrollment: 700 patients) was conducted to test the hypothesis that single-agent sunitinib improves progression-free survival (PFS) compared with capecitabine as treatment for advanced breast cancer (ABC). Patients with HER2-negative ABC that recurred after anthracycline and taxane therapy were randomized (1:1) to sunitinib 37.5 mg/day or capecitabine 1,250 mg/m(2) (1,000 mg/m(2) in patients >65 years) BID on days 1-14 q3w. The independent data-monitoring committee (DMC) determined during the first interim analysis (238 patients randomized to sunitinib, 244 to capecitabine) that the trial be terminated due to futility in reaching the primary endpoint. No statistical evidence supported the hypothesis that sunitinib improved PFS compared with capecitabine (one-sided P = 0.999). The data indicated that PFS was shorter with sunitinib than capecitabine (median 2.8 vs. 4.2 months, respectively; HR, 1.47; 95% CI, 1.16-1.87; two-sided P = 0.002). Median overall survival (15.3 vs. 24.6 months; HR, 1.17; two-sided P = 0.350) and objective response rates (11 vs. 16%; odds ratio, 0.65; P = 0.109) were numerically inferior with sunitinib versus capecitabine. While no new or unexpected safety findings were reported, sunitinib treatment was associated with higher frequencies and greater severities of many common adverse events (AEs) compared with capecitabine, resulting in more temporary discontinuations due to AEs with sunitinib (66 vs. 51%). The relative dose intensity was lower with sunitinib than capecitabine (73 vs. 95%). Based on these efficacy and safety results, sunitinib should not be used as monotherapy for patients with ABC.