Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Pharmacol Sin ; 44(1): 234-243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35840659

RESUMO

Inositol-requiring enzyme 1α (IRE1α) is the most conserved endoplasmic reticulum (ER) stress sensor with two catalytic domains, kinase and RNase, in its cytosolic portion. IRE1α inhibitors have been used to improve existing clinical treatments against various cancers. In this study we identified toxoflavin (TXF) as a new-type potent small molecule IRE1α inhibitor. We used luciferase reporter systems to screen compounds that inhibited the IRE1α-XBP1s signaling pathway. As a result, TXF was found to be the most potent IRE1α RNase inhibitor with an IC50 value of 0.226 µM. Its inhibitory potencies on IRE1α kinase and RNase were confirmed in a series of cellular and in vitro biochemical assays. Kinetic analysis showed that TXF caused time- and reducing reagent-dependent irreversible inhibition on IRE1α, implying that ROS might participate in the inhibition process. ROS scavengers decreased the inhibition of IRE1α by TXF, confirming that ROS mediated the inhibition process. Mass spectrometry analysis revealed that the thiol groups of four conserved cysteine residues (CYS-605, CYS-630, CYS-715 and CYS-951) in IRE1α were oxidized to sulfonic groups by ROS. In molecular docking experiments we affirmed the binding of TXF with IRE1α, and predicted its binding site, suggesting that the structure of TXF itself participates in the inhibition of IRE1α. Interestingly, CYS-951 was just near the docked site. In addition, the RNase IC50 and ROS production in vitro induced by TXF and its derivatives were negative correlated (r = -0.872). In conclusion, this study discovers a new type of IRE1α inhibitor that targets a predicted new alternative site located in the junction between RNase domain and kinase domain, and oxidizes conserved cysteine residues of IRE1α active sites to inhibit IRE1α. TXF could be used as a small molecule tool to study IRE1α's role in ER stress.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inositol , Espécies Reativas de Oxigênio , Cisteína , Cinética , Simulação de Acoplamento Molecular , Ribonucleases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo
3.
Biochim Biophys Acta ; 1840(7): 2212-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726979

RESUMO

BACKGROUND: Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear. METHODS: We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level. RESULTS: Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling. CONCLUSIONS: AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice. GENERAL SIGNIFICANCE: These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo dos Lipídeos , Metacrilatos/administração & dosagem , Mitocôndrias/metabolismo , Obesidade/metabolismo , Pirimidinas/administração & dosagem , Adipogenia/genética , Animais , Dieta Hiperlipídica , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Metacrilatos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/patologia , Pirimidinas/metabolismo , Estrobilurinas , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...