Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
BMC Cancer ; 24(1): 573, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724951

RESUMO

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Progressão da Doença , Instabilidade de Microssatélites , Fosfopiruvato Hidratase , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Prognóstico , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Pessoa de Meia-Idade , Nomogramas , Análise de Célula Única , Variações do Número de Cópias de DNA
2.
Sci Total Environ ; 932: 172915, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719035

RESUMO

The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.

3.
Sci Rep ; 14(1): 10710, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729985

RESUMO

Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.


Assuntos
Regulação da Expressão Gênica de Plantas , Lactuca , Metabolômica , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
4.
Cell Death Differ ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698061

RESUMO

Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.

5.
Plant Physiol Biochem ; 211: 108713, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38739963

RESUMO

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.

6.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731477

RESUMO

Reppe carbonylation of acetylene is an atom-economic and non-petroleum approach to synthesize acrylic acid and acrylate esters, which are key intermediates in the textile, leather finishing, and polymer industries. In the present work, a noble metal-free Co@SiO2 catalyst was prepared and evaluated in the methoxycarbonylation reaction of acetylene. It was discovered that pretreatment of the catalyst by different reductants (i.e., C2H2, CO, H2, and syngas) greatly improved the catalytic activity, of which Co/SiO2-H2 demonstrated the best performance under conditions of 160 °C, 0.05 MPa C2H2, 4 MPa CO, and 1 h, affording a production rate of 4.38 gMA+MP gcat-1 h-1 for methyl acrylate (MA) and methyl propionate (MP) and 0.91 gDMS gcat-1 h-1 for dimethyl succinate (DMS), respectively. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectra of CO adsorption (CO-DRIFTS) measurements revealed that an H2 reduction decreased the size of the Co nanoparticles and promoted the formation of hollow architectures, leading to an increase in the metal surface area and CO adsorption on the catalyst. The hot filtration experiment confirmed that Co2(CO)8 was generated in situ during the reaction or at the pre-activation stage, which served as the genuine active species. Our work provides a facile and convenient approach to the in situ synthetization of Co2(CO)8 for a Reppe carbonylation reaction.

7.
J Am Chem Soc ; 146(17): 11955-11967, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640231

RESUMO

Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.

8.
Small Methods ; : e2400006, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593368

RESUMO

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.

9.
Cancer Lett ; 590: 216869, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593918

RESUMO

Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.


Assuntos
Proliferação de Células , Neoplasias de Cabeça e Pescoço , Histona Acetiltransferases , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Animais , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Acetilação , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Lisina Acetiltransferases/metabolismo , Lisina Acetiltransferases/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Efeito Warburg em Oncologia , Masculino , Feminino , Movimento Celular , Ensaios Antitumorais Modelo de Xenoenxerto , Invasividade Neoplásica , Isoenzimas/metabolismo , Isoenzimas/genética
10.
J Cell Physiol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529784

RESUMO

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.

11.
Invest Ophthalmol Vis Sci ; 65(3): 38, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38551583

RESUMO

Purpose: The aim of this study was to describe the transcriptional changes of individual cellular components in the lacrimal sac in patients with primary acquired nasolacrimal duct obstruction (PANDO) and attempt to construct the first lacrimal sac cellular atlas to elucidate the potential mechanisms that may drive the disease pathogenesis. Methods: Lacrimal sac samples were obtained intra-operatively during the endoscopic dacryocystorhinostomy (EnDCR) procedure from five patients. Single-cell RNA sequencing was performed to analyze each individual cell population including epithelial and immune cells during the early inflammatory and late inflammatory phases of the disease. Results: Eleven cell types were identified among 25,791 cells. T cells and B cells were the cell populations with the greatest variation in cell numbers between the two phases and were involved in immune response and epithelium migration-related pathways. The present study showed that epithelial cells highly expressed the genes of senescence-associated secretory phenotype (SASP) and were involved in influencing the inflammation, neutrophil chemotaxis, and migration during the late inflammatory stage. Enhanced activity of CXCLs-CXCRs between the epithelial cells and neutrophils was noted by the cell-cell communication analysis and is suspected to play a role in inflammation by recruiting more neutrophils. Conclusions: The study presents a comprehensive single-cell landscape of the lacrimal sac cells in different phases of PANDO. The contribution of T cells, B cells, and epithelial cells to the inflammatory response, and construction of the intercellular signaling networks between the cells within the lacrimal sac has further enhanced the present understanding of the PANDO pathogenesis.


Assuntos
Dacriocistorinostomia , Aparelho Lacrimal , Obstrução dos Ductos Lacrimais , Ducto Nasolacrimal , Humanos , Ducto Nasolacrimal/metabolismo , Obstrução dos Ductos Lacrimais/genética , Obstrução dos Ductos Lacrimais/metabolismo , Análise da Expressão Gênica de Célula Única , Dacriocistorinostomia/efeitos adversos , Dacriocistorinostomia/métodos , Inflamação/metabolismo , Aparelho Lacrimal/metabolismo
12.
RSC Adv ; 14(11): 7490-7498, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440281

RESUMO

In this work, we report a novel high-pressure solid-state metathesis (HSM) reaction to produce spherical bulk (diameters 2-4 mm) Co-C alloys (Co3C and Co1-xCx). At 2-5 GPa and 1300 °C, C atoms preferentially occupy the interstitial sites of the face-centered cubic (fcc) Co lattice, leading to the formation of metastable Pnma Co3C. The Co3C decomposes above 1400 °C at 2-5 GPa, C atoms infiltrate the interstitial sites of the fcc Co lattice, saturating the C content in Co, forming an fcc Co1-xCx solid solution while the C atoms in excess are found to precipitate in the form of graphite. The Vickers hardness of the Co-C alloys is approximately 6.1 GPa, representing a 19.6% increase compared to hexagonal close-packed (hcp) Co. First-principles calculations indicate that the presence of C atoms in the Pnma Co3C structure leads to a relative decrease in the magnetic moments of the two distinct Co atom occupancies. The Co-C alloys exhibited a soft magnetic behavior with saturation magnetization up to 93.71 emu g-1 and coercivity of 74.8 Oe; coercivity increased as the synthesis pressure rises.

13.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513516

RESUMO

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Assuntos
Lactuca , Microplásticos , Microplásticos/análise , Microplásticos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Solo/química
14.
Angew Chem Int Ed Engl ; 63(12): e202318461, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38302835

RESUMO

Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.

15.
Curr Eye Res ; 49(5): 543-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353328

RESUMO

PURPOSE: To evaluate the outcomes of endoscopy-assisted modified Weber-Ferguson's approach in the management of primary lacrimal sac tumors with extension into the neighboring tissues. METHODS: A retrospective interventional study was performed on all patients with lacrimal sac tumors treated with the endoscopy-assisted modified Weber-Ferguson approach between January 2010 and June 2022 at the Shanghai Ninth People's Hospital, China. Data assessed include demographics, clinical presentations, imaging features, surgical techniques, histopathology, adjuvant modalities of management, complications, and outcomes. RESULTS: A total of 13 patients were included in the analysis. Epiphora and palpable mass lesion were the presenting complaint in 84.6% (11/13) of the patients. Nearly half of the patients (46.1%, 6/13) were misdiagnosed as lacrimal duct obstruction. All the lacrimal sac tumors in the present series showed uneven enhancement on T1-weighted MRI imaging. Postoperatively, 84.6% (11/13) patients recovered well with excellent esthetics and were disease-free after a mean follow-up of 58.6 months. Two patients who underwent additional exenteration developed recurrence and succumbed (at 41 and 96 months follow up) while they were on palliative chemoradiation. CONCLUSION: The endoscopic-assisted modified Weber-Fergusson surgical approach is effective in providing better visibility and accessibility to lacrimal sac tumors with extension into neighboring tissue.


Assuntos
Dacriocistorinostomia , Doenças do Aparelho Lacrimal , Aparelho Lacrimal , Obstrução dos Ductos Lacrimais , Ducto Nasolacrimal , Humanos , Ducto Nasolacrimal/diagnóstico por imagem , Ducto Nasolacrimal/cirurgia , Dacriocistorinostomia/métodos , Estudos Retrospectivos , China/epidemiologia , Endoscopia/métodos , Obstrução dos Ductos Lacrimais/terapia , Doenças do Aparelho Lacrimal/diagnóstico , Doenças do Aparelho Lacrimal/cirurgia , Doenças do Aparelho Lacrimal/patologia , Aparelho Lacrimal/patologia
16.
Dalton Trans ; 53(10): 4432-4443, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349221

RESUMO

In this work, a simple and cost-effective method was proposed and developed to prepare a novel multilayer-structured Kevlar®@nickel-phosphorus-boron@copper@copper stearate (Kevlar®@Ni-P-B@Cu@CS) composite fabric with high conductivity, high flexibility, high hydrophobicity, and high durability to effectively shield electromagnetic interference (EMI). In this method, an amorphous Ni-P-B alloy nanolayer was initially deposited onto a Kevlar® fabric via electroless plating. Afterward, a crystalline Cu nanolayer was deposited as the second layer via electroplating. Finally, a monolayer of copper stearate was innovatively self-assembled as the outermost protective layer. The Cu deposition was effectively adjusted and designed by controlling the plating current and plating time. The electrical resistance and contact angle of the optimized Kevlar®@Ni-P-B@Cu@CS composite fabric were as low as 3.2 mΩ sq-1 and as high as 115.39°, respectively, indicating that the fabric could withstand bending, tape-off, corrosion, and accelerated environmental tests. The average EMI-shielding efficiency of the durable composite fabric was 93.9 dB in the frequency range of 8.2-12.4 GHz, which was mainly attributed to the absorption loss. Thus, the proposed material configuration has promise for applications in aviation, aerospace, telecommunication, wearable devices, and military industries.

17.
Eur J Ophthalmol ; : 11206721241230581, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327083

RESUMO

OBJECTIVE: To correlate and evaluate the power and limitations of CT-DCG in determining the level and type of lacrimal duct obstruction in comparison to dacryoendoscopy in patients clinically suspected to be having partial or complete primary acquired nasolacrimal duct obstruction (PANDO). METHODS: A retrospective chart review was performed on 1232 lacrimal drainage systems of 957 patients who suffered from primary acquired nasolacrimal duct obstruction (PANDO) at Shanghai Ninth People's Hospital. Patients were examined with CT-DCG and correlated with dacryoendoscopy and the findings of clinical examination. RESULTS: Of the studied patients, 173 were men and 784 were women with an age range of 18-93 years. Of the 1232 lacrimal pathways, good CT-DCG images could be obtained in 980 cases and dacryoendoscopy in 957 cases. Of these complete obstructions were noted in 81% (794/980), and partial obstructions were identified in 19% (186/980) with CT-DCG. CT-DCG and dacryoendoscopy showed 68.4% agreement for the type of the obstruction and 63% for the level of the obstruction. The majority of the obstructions occurred at the sac-duct junction (62.5%) followed by the upper half of the nasolacrimal duct (27.5%). There was a significant difference in the correlation of the obstruction type with age group and with the duration of symptoms. As the duration of symptoms increased, the proportion of complete lacrimal duct obstructions as shown on CT-DCG images increased and the proportion of incomplete obstruction decreased (p = 0.015). CONCLUSIONS: The junction of lacrimal sac and nasolacrimal duct was the most common obstruction site. Age and the duration of symptoms influenced the type of obstruction noted. The degree and level of agreement between the investigations was moderate. A combination of CT-DCG and Dacryoendoscopy could together identify the location more accurately.

18.
J Colloid Interface Sci ; 660: 617-627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266343

RESUMO

Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 µmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.

19.
Small ; : e2309091, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247184

RESUMO

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58 Fe0.38 P0.07 O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

20.
Nat Commun ; 15(1): 914, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291033

RESUMO

Perovskite materials and their applications in optoelectronics have attracted intensive attentions in recent years. However, in-depth understanding about their anisotropic behavior in ultrafast carrier dynamics is still lacking. Here we explore the ultrafast dynamical evolution of photo-excited carriers and photoluminescence based on differently-oriented MAPbBr3 wafers. The distinct in-plane polarization of carrier relaxation dynamics of the (100), (110) and (111) wafers and their out-of-plane anisotropy in a picosecond time scale were found by femtosecond time- and polarization-resolved transient transmission measurements, indicating the relaxation process dominated by optical/acoustic phonon interaction is related to photoinduced transient structure rearrangements. Femtosecond laser two-photon fabricated patterns exhibit three orders of magnitude enhancement of emission due to the formation of tentacle-like microstructures. Such a ultrafast dynamic study carried on differently-oriented crystal wafers is believed to provide a deep insight about the photophysical process of perovskites and to be helpful for developing polarization-sensitive and ultrafast-response optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...