Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Inflamm Res ; 17: 693-710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332898

RESUMO

Objective: Diabetic nephropathy (DN) represents the principal cause of end-stage renal diseases worldwide, lacking effective therapies. Fatty acid (FA) serves as the primary energy source in the kidney and its dysregulation is frequently observed in DN. Nevertheless, the roles of FA metabolism in the occurrence and progression of DN have not been fully elucidated. Methods: Three DN datasets (GSE96804/GSE30528/GSE104948) were obtained and combined. Differentially expressed FA metabolism-related genes were identified and subjected to DN classification using "ConsensusClusterPlus". DN subtypes-associated modules were discovered by "WGCNA", and module genes underwent functional enrichment analysis. The immune landscapes and potential drugs were analyzed using "CIBERSORT" and "CMAP", respectively. Candidate diagnostic biomarkers of DN were screened using machine learning algorithms. A prediction model was constructed, and the performance was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The online tool "Nephroseq v5" was conducted to reveal the clinical significance of the candidate diagnostic biomarkers in patients with DN. A DN mouse model was established to verify the biomarkers' expression. Results: According to 39 dysregulated FA metabolism-related genes, DN samples were divided into two molecular subtypes. Patients in Cluster B exhibited worse outcomes with a different immune landscape compared with those in Cluster A. Ten potential small-molecular drugs were predicted to treat DN in Cluster B. The diagnostic model based on PRKAR2B/ANXA1 was created with ideal predictive values in early and advanced stages of DN. The correlation analysis revealed significant association between PRKAR2B/ANXA1 and clinical characteristics. The DN mouse model validated the expression patterns of PRKAR2B/ANXA1. Conclusion: Our study provides new insights into the role of FA metabolism in the classification, immunological pathogenesis, early diagnosis, and precise therapy of DN.

2.
J Exp Clin Cancer Res ; 42(1): 166, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443052

RESUMO

BACKGROUND: Increasing evidence suggests a vital role of the pre-metastatic niche in the formation of distant metastasis of many cancers. However, how the pre-metastatic niche is formed and promotes pulmonary metastasis of hepatocellular carcinoma (HCC) remains unknown. METHODS: Orthotopic liver tumor models and RNA-Seq were used to identify dysregulated genes in the pre-metastatic lung. Il1b knockout (Il1b-/-) mice and lentivirus-mediated gene knockdown/overexpression were utilized to demonstrate the role of interleukin 1 beta (IL-1ß)/serum amyloid A3 (SAA3) in the pre-metastatic niche formation and pulmonary metastasis. The potential molecular mechanisms were investigated by RNA-Seq, real-time quantitative PCR (qPCR), western blotting, immunohistochemistry (IHC), flow cytometry, luciferase reporter assay, double immunofluorescent staining and H&E staining. RESULTS: Accumulation of myeloid cells and upregulation of IL-1ß were observed in the pre-metastatic lung of orthotopic liver tumor models. Myeloid cells accumulation and pulmonary metastasis were suppressed in Il1b-/- mice and Il1r1-silencing mice. Mechanistically, SAA3 and matrix metallopeptidase 9 (MMP9) were identified as potential downstream targets of IL-1ß. Overexpression of SAA3 in the lungs of Il1b-/- mice restored myeloid cells accumulation and pulmonary metastasis of the orthotopic HCC xenografts. Moreover, alveolar macrophages-derived IL-1ß dramatically enhanced SAA3 expression in alveolar epithelial cells in an NF-κB dependent manner and increased MMP9 levels in an autocrine manner. Furthermore, SAA3 recruited myeloid cells to the lung without affecting the expression of MMP9 in myeloid cells. CONCLUSIONS: Our study suggests a key role of pulmonary IL-1ß and SAA3 in creating a permissive lung pre-metastatic niche by enhancing MMP9 expression and recruiting myeloid cells, respectively, thus promoting pulmonary metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Interleucina-1beta , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
3.
J Transl Med ; 21(1): 359, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264340

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as calcific aortic valve disease (CAVD). We aim to explore the CKD-associated genes potentially involving CAVD pathogenesis, and to discover candidate biomarkers for the diagnosis of CKD with CAVD. METHODS: Three CAVD, one CKD-PBMC and one CKD-Kidney datasets of expression profiles were obtained from the GEO database. Firstly, to detect CAVD key genes and CKD-associated secretory proteins, differentially expressed analysis and WGCNA were carried out. Protein-protein interaction (PPI), functional enrichment and cMAP analyses were employed to reveal CKD-related pathogenic genes and underlying mechanisms in CKD-related CAVD as well as the potential drugs for CAVD treatment. Then, machine learning algorithms including LASSO regression and random forest were adopted for screening candidate biomarkers and constructing diagnostic nomogram for predicting CKD-related CAVD. Moreover, ROC curve, calibration curve and decision curve analyses were applied to evaluate the diagnostic performance of nomogram. Finally, the CIBERSORT algorithm was used to explore immune cell infiltration in CAVD. RESULTS: The integrated CAVD dataset identified 124 CAVD key genes by intersecting differential expression and WGCNA analyses. Totally 983 CKD-associated secretory proteins were screened by differential expression analysis of CKD-PBMC/Kidney datasets. PPI analysis identified two key modules containing 76 nodes, regarded as CKD-related pathogenic genes in CAVD, which were mostly enriched in inflammatory and immune regulation by enrichment analysis. The cMAP analysis exposed metyrapone as a more potential drug for CAVD treatment. 17 genes were overlapped between CAVD key genes and CKD-associated secretory proteins, and two hub genes were chosen as candidate biomarkers for developing nomogram with ideal diagnostic performance through machine learning. Furthermore, SLPI/MMP9 expression patterns were confirmed in our external cohort and the nomogram could serve as novel diagnosis models for distinguishing CAVD. Finally, immune cell infiltration results uncovered immune dysregulation in CAVD, and SLPI/MMP9 were significantly associated with invasive immune cells. CONCLUSIONS: We revealed the inflammatory-immune pathways underlying CKD-related CAVD, and developed SLPI/MMP9-based CAVD diagnostic nomogram, which offered novel insights into future serum-based diagnosis and therapeutic intervention of CKD with CAVD.


Assuntos
Valvopatia Aórtica , Estenose da Valva Aórtica , Humanos , Metaloproteinase 9 da Matriz , Leucócitos Mononucleares , Biologia Computacional
4.
iScience ; 26(4): 106308, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942051

RESUMO

Phenotypic dimorphism between queens and workers is an important biological characteristic of honeybees that has been the subject of intensive research. The enormous differences in morphology, lifespan, physiology, and behavior between queens and workers are caused by a complicated set of factors. Epigenetic modifications are considered to play an important role in this process. In this study, we analyzed the differences in chromosome interactions and H3K27ac and H3K4me1 modifications between the queens and workers using high-throughput chromosome conformation capture (Hi-C) and Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) technologies. We found that the queens contain more chromosome interactions and more unique H3K27ac modifications than workers; in contrast, workers have more H3K4me1 modifications than queens. Moreover, we identified Map3k15 as a potential caste gene in queen-worker differentiation. Our results suggest that chromosomal conformation and H3K27ac and H3K4me1 modifications are involved in regulating queen-worker differentiation, which reveals that the queen-worker phenotypic dimorphism is regulated by multiple epigenetic modifications.

5.
Insect Biochem Mol Biol ; 155: 103929, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906046

RESUMO

The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.


Assuntos
Epigenômica , Multiômica , Abelhas/genética , Animais , Larva/genética
6.
BMC Surg ; 22(1): 438, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566186

RESUMO

BACKGROUND: The postoperative length of hospital stay (PLOS) is an important indicator of surgical quality. We identified perioperative factors that affect prolonged PLOS (PPLOS) after laparoscopic colorectal cancer resection, which is the preferred surgical approach for colorectal cancer, the third most common cancer. METHODS: This study was a secondary analysis of a randomized trial (clinicaltrials.gov ID: NCT03160144) that included 280 patients who underwent laparoscopic colorectal cancer resection. The primary outcome was a PPLOS, defined as a PLOS that was longer than the median PLOS. Baseline, anesthetic, surgical, and postoperative management factors were included in the univariate and multivariate analyses to identify factors influencing PPLOS. RESULTS: The median PLOS was 10 days, and 117 patients had a PPLOS. We identified six influencing factors for PPLOS: preoperative pulse oxygen saturation < 96% (odds ratio [OR], 3.09 [95% confidence interval (CI) 1.38-6.92]; P = 0.006), distant tumor metastasis (OR, 0.34 [95% CI 0.13-0.91]; P = 0.031), the Miles procedure or left hemicolectomy (OR, 4.51 [95% CI 1.67-12.18]; P = 0.003), perioperative surgical events (OR, 2.44 [95% CI 1.25-4.76]; P = 0.009), postoperative albumin infusion (OR, 2.19 [95% CI 1.14-4.19]; P = 0.018), and postoperative early ambulation (OR, 0.35 [95% CI 0.18-0.68]; P = 0.002). Further stratified analysis showed that postoperative albumin infusion might be a risk factor for PPLOS, even in patients with a preoperative albumin level < 40 g/L (OR, 2.29 [95% CI 0.98-5.34]; P = 0.056) or duration of surgery ≥ 3 h (OR, 2.52 [95% CI 1.08-5.87]; P = 0.032). CONCLUSIONS: A low preoperative pulse oximetry reading, complex surgical procedures, perioperative surgical events, and postoperative albumin infusion may be risk factors for PPLOS after laparoscopic colorectal cancer resection, whereas distant tumor metastasis and postoperative early ambulation might be protective factors. The association between postoperative albumin infusion, a modifiable factor, and PLOS or clinical outcomes warrants further investigation.


Assuntos
Neoplasias Colorretais , Laparoscopia , Humanos , Tempo de Internação , Laparoscopia/métodos , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Colectomia/métodos , Fatores de Risco , Complicações Pós-Operatórias/etiologia
7.
Insects ; 13(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36292876

RESUMO

RNA interference (RNAi) has been used successfully to reduce target gene expression and induce specific phenotypes in several species. It has proved useful as a tool to investigate gene function and has the potential to manage pest populations and reduce disease pathogens. However, it is not known whether different administration methods are equally effective at interfering with genes in bees. Therefore, we compared the effects of feeding and injection of small interfering RNA (siRNA) on the messenger RNA (mRNA) levels of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1), 4-coumarate-CoA ligase (4CL), and heat shock protein 70 (HSP70). Both feeding and injection of siRNA successfully knocked down the gene but feeding required more siRNA than the injection. Our results suggest that both feeding and injection of siRNA effectively interfere with brain genes in bees. The appropriateness of each method would depend on the situation.

8.
J Big Data ; 9(1): 88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818395

RESUMO

Background: The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. Methods: Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients' ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. Results: Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. Conclusions: TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy. Supplementary Information: The online version contains supplementary material available at 10.1186/s40537-022-00641-z.

9.
Front Surg ; 9: 877857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651690

RESUMO

Background: Clinically, malignant gynecological tumors found by chance during the diagnosis and treatment of pelvic organ prolapse (POP) are rare, and they are usually missed, leading to delayed diagnosis and treatment. The initial treatment of these tumors cannot be standardized, and, as a single surgical intervention may not be able to treat both the tumor and prolapse, secondary surgery is usually needed, affecting the quality of life of patients. Case presentation: The present study retrospectively analyzed the data of three patients who were diagnosed with malignant gynecological tumors during the diagnosis and treatment of POP. These patients were among 215 patients with POP treated in Yuncheng Central Hospital of Shanxi Province between January 2011 and May 2020. The case characteristics, surgical interventions, postoperative treatments, and follow-ups were summarized, and the characteristics of diagnosis and treatment were analyzed in the context of relevant literature. Conclusion: As long as clinicians operate in strict accordance with the standards of diagnosis and treatment, obtain a complete medical history, undertake a physical examination, and remain diligent in auxiliary examinations, following existing clinical methods and diagnosis and treatment processes, patients with POP complicated with malignant gynecological tumors can be clearly diagnosed before and during surgery. In this way, initial treatment can be standardized, and surgical methods can be selected that address both the tumor and prolapse, thereby avoiding secondary surgery and improving the patient's quality of life.

10.
iScience ; 25(5): 104301, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573188

RESUMO

The distinct honeybee (Apis mellifera) worker and queen castes have become a model for the study of genomic mechanisms of phenotypic plasticity. Here we performed a nanopore-based direct RNA sequencing with exceptionally long reads to compare the mRNA transcripts between queen and workers at three points during their larval development. We found thousands of significantly differentially expressed transcript isoforms (DEIs) between queen and worker larvae. These DEIs were formatted by a flexible splicing system. We showed that poly(A) tails participated in this caste differentiation by negatively regulating the expression of DEIs. Hundreds of isoforms uniquely expressed in either queens or workers during their larval development, and isoforms were expressed at different points in queen and worker larval development demonstrating a dynamic relationship between isoform expression and developmental mechanisms. These findings show the full complexity of RNA processing and transcript expression in honey bee phenotypic plasticity.

11.
PLoS One ; 17(1): e0262194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073345

RESUMO

Tomato zonate spot virus (TZSV), a member of the genus orthotospovirus, causes severe damage to vegetables and ornamental crops in southwest China. The NSs protein is an RNA silencing suppressor in various orthotospovirus like TZSV, but its mechanism and role in virus infection are poorly understood. Here, we observed that an NSs-GFP fusion protein was transiently expressed on the plasma membrane and Golgi bodies in Nicotiana benthamiana plants. The TZSV NSs gene was silenced and infiltrated into N. benthamiana and N. tabacum cv. K326. RT-qPCR and Indirect enzyme-linked immunosorbent assay (ID-ELISA) showed that the transcription and the protein expression of the NSs gene were inhibited by more than 90.00%, and the symptoms on silenced plants were alleviated. We also found that the expression of the Zingipain-2-like gene significantly decreased when the NSs gene was silenced, resulting in co-localization of the NSs-GFP and the Zingipain-2-like-mCherry fusion protein. The findings of this study provide new insights into the mechanism of silencing suppression by NSs, as well as its effect on systemic virus infection, and also support the theory of disease resistance breeding and control and prevention of TZSV in the field.


Assuntos
Tospovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Membrana Celular/metabolismo , Inativação Gênica , Complexo de Golgi/metabolismo , Microscopia Confocal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Nicotiana/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
12.
Microb Ecol ; 83(4): 1105-1111, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34342699

RESUMO

Host-parasite co-evolution is a process of reciprocal, adaptive genetic change. In natural conditions, parasites can shift to other host species, given both host and parasite genotypes allow this. Even though host-parasite co-evolution has been extensively studied both theoretically and empirically, few studies have focused on parasite gene flow between native and novel hosts. Nosema ceranae is a native parasite of the Asian honey bee Apis cerana, which infects epithelial cells of mid-guts. This parasite successfully switched to the European honey bee Apis mellifera, where high virulence has been reported. In this study, we used the parasite N. ceranae and both honey bee species as model organisms to study the impacts of two-host habitat sharing on parasite diversity and virulence. SNVs (Single Nucleotide Variants) were identified from parasites isolated from native and novel hosts from sympatric populations, as well as novel hosts from a parapatric population. Parasites isolated from native hosts showed the highest levels of polymorphism. By comparing the parasites isolated from novel hosts between sympatric and parapatric populations, habitat sharing with the native host significantly enhanced parasite diversity, suggesting there is continuing gene flow of parasites between the two host species in sympatric populations.


Assuntos
Nosema , Parasitos , Animais , Abelhas , Ecossistema , Fluxo Gênico , Nosema/genética
13.
Oncogene ; 40(37): 5639-5650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34321604

RESUMO

Long noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.


Assuntos
Carcinoma de Células Renais , RNA Longo não Codificante , Carcinogênese , Humanos , Neoplasias Renais , Ubiquitinação , Regulação para Cima
14.
Front Insect Sci ; 1: 756886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468896

RESUMO

As a phoretic parasite and virus vector, the mite Varroa destructor and the associated Deformed wing virus (DWV) form a lethal combination to the honey bee, Apis mellifera. Routine acaricide treatment has been reported to reduce the diversity of mites and select for tolerance against these treatments. Further, different DWV strains face selective pressures when transmitted via mites. In this study, the haplotypes of Varroa mites and associated DWV variants were quantified using long reads. A single haplotype dominated the mite mitochondrial gene cytochrome oxidase subunit I, reflecting an ancient bottleneck. However, highly polymorphic genes were present across the mite genome, suggesting the diversity of mites could be actively maintained at a regional level. DWV detected in both mites and honey bees show a dominant variant with only a few low-frequency alternate haplotypes. The relative abundances of DWV haplotypes isolated from honey bees and mites were highly consistent, suggesting that some variants are favored by ongoing selection.

15.
Adv Sci (Weinh) ; 7(21): 2001364, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173727

RESUMO

Acetylation is a critical mechanism to modulate tumor-suppressive activity of p53, but the causative roles of long non-coding RNAs (lncRNAs) in p53 acetylation and their biological significance remain unexplored. Here, lncRNA LOC100294145 is discovered to be transactivated by p53 and is thus designated as lnc-Ip53 for lncRNA induced by p53. Furthermore, lnc-Ip53 impedes p53 acetylation by interacting with histone deacetylase 1 (HDAC1) and E1A binding protein p300 (p300) to prevent HDAC1 degradation and attenuate p300 activity, resulting in abrogation of p53 activity and subsequent cell proliferation and apoptosis resistance. Mouse xenograft models reveal that lnc-Ip53 promotes tumor growth and chemoresistance in vivo, which is attenuated by an HDAC inhibitor. Silencing lnc-Ip53 inhibits the growth of xenografts with wild-type p53, but not those expressing acetylation-resistant p53. Consistently, lnc-Ip53 is upregulated in multiple cancer types, including hepatocellular carcinoma (HCC). High levels of lnc-Ip53 is associated with low levels of acetylated p53 in human HCC and mouse xenografts, and is also correlated with poor survival of HCC patients. These findings identify a novel p53/lnc-Ip53 negative feedback loop in cells and indicate that abnormal upregulation of lnc-Ip53 represents an important mechanism to inhibit p53 acetylation/activity and thereby promote tumor growth and chemoresistance, which may be exploited for anticancer therapy.

16.
Hepatology ; 71(5): 1660-1677, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31509261

RESUMO

BACKGROUND AND AIMS: DNA damage-induced NF-κB activation is a major obstacle to effective antitumour chemotherapy. Long noncoding RNAs (lncRNAs) that regulate chemoresistance of cancer cells remain largely unknown. This study aimed to characterize the lncRNAs that may affect chemotherapy sensitivity. APPROACH AND RESULTS: We found that lncRNA PDIA3P1 (protein disulfide isomerase family A member 3 pseudogene 1) was up-regulated in multiple cancer types and following treatment with DNA-damaging chemotherapeutic agents, like doxorubicin (Dox). Higher PDIA3P1 level was associated with poorer recurrence-free survival of human hepatocellular carcinoma (HCC). Both gain-of-function and loss-of-function studies revealed that PDIA3P1 protected cancer cells from Dox-induced apoptosis and allowed tumor xenografts to grow faster and to be more resistant to Dox treatment. Mechanistically, miR-125a/b and miR-124 suppressed the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), but PDIA3P1 bound to miR-125a/b/miR-124 and relieved their repression on TRAF6, leading to activation of the nuclear factor kappa B (NF-κB) pathway. Consistently, the effect of PDIA3P1 inhibition in promoting Dox-triggered apoptosis was antagonized by silencing the inhibitor of κBα (IκBα) or overexpressing TRAF6. Administration of BAY 11-7085, an NF-κB inhibitor attenuated PDIA3P1-induced resistance to Dox treatment in mouse xenografts. Moreover, up-regulation of PDIA3P1 was significantly correlated with elevation of TRAF6, phosphorylated p65, or NF-κB downstream anti-apoptosis genes in human HCC tissues. These data indicate that enhanced PDIA3P1 expression may confer chemoresistance by acting as a microRNA sponge to increase TRAF6 expression and augment NF-κB signaling. Subsequent investigations into the mechanisms of PDIA3P1 up-regulation revealed that human homologue of mRNA transport mutant 4 (hMTR4), which promotes RNA degradation, could bind to PDIA3P1, and this interaction was disrupted by Dox treatment. Overexpression of hMTR4 attenuated Dox-induced elevation of PDIA3P1, whereas silencing hMTR4 increased PDIA3P1 level, suggesting that Dox may up-regulate PDIA3P1 by abrogating the hMTR4-mediated PDIA3P1 degradation. CONCLUSION: There exists a hMTR4-PDIA3P1-miR-125/124-TRAF6 regulatory axis that regulates NF-κB signaling and chemoresistance, which may be exploited for anticancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Dano ao DNA/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Pseudogenes , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Sulfonas/farmacologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Arch Environ Contam Toxicol ; 78(1): 117-123, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642948

RESUMO

As a commonly used pyrethroid insecticide, deltamethrin is very toxic to honeybees, which seriously threatens the managed and feral honeybee population. Because deltamethrin is a nerve agent, it may interfere with the nervous system of honeybees, such as dance behavior and memory-related characteristics. We found that the waggle dances were less precise in honeybees that consumed syrup containing deltamethrin (pesticide group) than those that consumed normal sucrose syrup (control group). Compared with the control group, honeybees of the pesticide group significantly increased number of circuits per 15 s, the divergence angle, return phases in waggle dances, as well as the crop content of the dance followers. Furthermore, six learning and memory-related genes were significantly interfered with the gene expression levels. Our data suggest that the sublethal dose of deltamethrin impaired the honeybees' learning and memory and resulted in cognitive disorder. The novel results assist in establishing guidelines for the risk assessment of pesticide to honeybee safety and prevention of nontarget biological agriculture pesticide poisoning.


Assuntos
Comunicação Animal , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Abelhas/fisiologia , Relação Dose-Resposta a Droga , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos
18.
Int Heart J ; 61(1): 138-144, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31875620

RESUMO

Exercise preconditioning may protect against cardiac injury induced by lipopolysaccharide (LPS), but the mechanism is unresolved. The aim of this study is to explore whether the general control nonderepressible 2 (GCN2) kinase gene is associated with the protective effect of exercise preconditioning. Eight-week-old male C57BL/6J (n = 40) and GCN2 knockout (KO) (n = 40) mice were divided into four groups: control, LPS (L), exercise preconditioning (E), and exercise preconditioning LPS (EL). Mice in the exercise groups performed exercise for eight weeks. After exercise, all mice were given an equal volume of LPS or saline (10 µg/g). We measured the cardiac function using echocardiography and then collected heart tissue. Exercise preconditioning improved cardiac inflammation (interleukin-6, tumor necrosis factor α) and cardiac dysfunction (ejection fraction, fraction shortening) in C57 mice induced by LPS and also decreased the expression levels of GCN2, phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), and activating transcription factor 4 (ATF4). Moreover, GCN2 KO decreased inflammation and cardiac dysfunction induced by LPS in sedentary mice. The inflammation and cardiac dysfunction in the GCN2 KO EL group were lower than in the C57 EL group, and the expression of GCN2, p-eIF2α, and ATF4 in the GCN2 KO EL group was lower than in the C57 EL group. Exercise preconditioning alleviated cardiac injury induced by LPS. GCN2 KO also improved cardiac injury. Exercise preconditioning promoted the effect of GCN2 KO in alleviating cardiac injury, and the GCN2 and eIF2α/ATF4 pathways play an important role in the process.


Assuntos
Traumatismos Cardíacos/prevenção & controle , Lipopolissacarídeos/efeitos adversos , Condicionamento Físico Animal/métodos , Proteínas Serina-Treonina Quinases/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Ecocardiografia , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Inativação de Genes , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/diagnóstico , Traumatismos Cardíacos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
19.
Curr Biol ; 29(13): 2208-2213.e3, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31231048

RESUMO

Influences from the mother on offspring phenotype, known as maternal effects, are an important cause of adaptive phenotypic plasticity [1, 2]. Eusocial insects show dramatic phenotypic plasticity with morphologically distinct reproductive (queen) and worker castes [3, 4]. The dominant paradigm for honeybees (Apis mellifera) is that castes are environmentally rather than genetically determined, with the environment and diet of young larvae causing caste differentiation [5-9]. A role for maternal effects has not been considered, but here we show that egg size also influences queen development. Queens laid significantly bigger eggs in the larger queen cells than in the worker cells. Eggs laid in queen cells (QE), laid in worker cells (WE), and 2-day old larvae from worker cells (2L) were transferred to artificial queen cells to be reared as queens in a standardized environment. Newly emerged adult queens from QE were heavier than those from the other two groups and had more ovarioles, indicating a consequence of egg size for adult queen morphology. Gene expression analyses identified several significantly differentially expressed genes between newly emerged queens from QE and those from the other groups. These included a disproportionate number of genes involved in hormonal signaling, body development, and immune pathways, which are key traits differing between queens and workers. That egg size influences emerging queen morphology and physiology and that queens lay larger eggs in queen cells demonstrate both a maternal effect on the expression of the queen phenotype and a more active role for the queen in gyne production than has been realized previously.


Assuntos
Abelhas/fisiologia , Oviposição , Animais , Abelhas/genética , Feminino , Herança Materna , Óvulo/fisiologia , Fenótipo
20.
Yi Chuan ; 40(2): 155-161, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29428908

RESUMO

Tyramine is a biological polyamine, which serves important functions as neurotransmitters, neuromodulators and neurohormone of the central nervous system. It participates in the regulation of various behavior and physiological processes in insects. For example, tyramine and its receptor genes are involved in the regulation of learning and memory in the animals. In this study, the full-length cDNA sequences of the tyramine receptor genes (Actyr1 and Actyr2) of the Chinese honeybee, Apis cerana cerana, were cloned and sequenced for the first time. Their expression patterns were examined in different tissues by qRT-PCR and localized in the head by in situ hybridization with digoxigenin (DIG)-labeled RNA probes. The full-length cDNAs of Actyr1 and Actyr2 are 1241 bp (GenBank accession no. KC814693) and 1270 bp (GenBank accession no.KC814693) in length and encode 297 amino acids and 399 amino acids, respectively. qRT-PCR results showed that the expression levels of both Actyr1 and Actyr2 were the highest in the head, followed by the abdomen, then the antennae and the lowest in the thorax. The expression level in the head was significantly higher than that in other tissues. Moreover, in situ hybridization showed that the expression of Actyr1 and Actyr2 genes were mainly localized to the Kenyon cells of the mushroom bodies and cells around the antennal lobes. These observations suggest that some interactions between these two genes in certain cells could be important in regulating various biological functions, such as learning and memory, in the honeybee.


Assuntos
Abelhas/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Receptores de Amina Biogênica/genética , Animais , Encéfalo/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Hibridização In Situ , Proteínas de Insetos/classificação , Corpos Pedunculados/metabolismo , Filogenia , Isoformas de Proteínas/genética , Receptores de Amina Biogênica/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...