Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Appl Opt ; 63(10): 2621-2629, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568545

RESUMO

When a binocular vision sensor (BVS) is installed in a narrow space, traditional calibration methods are limited as all targets should be placed in more than three different positions. To solve this problem, an on-site calibration method based on the phase-shift algorithm is proposed in our paper. Intrinsic parameters of these two cameras should be first calibrated offline. Series of phase-shift patterns are projected onto any one target with known three-dimensional information to determine the relationship between two cameras. The target utilized in our proposed method can be selected arbitrarily, which is suitable to achieve the on-site calibration of BVS, especially in industrial vibration environments. Experiments are conducted to validate the effectiveness and robustness of our proposed method.

3.
J Control Release ; 368: 580-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467194

RESUMO

Neuronal damage caused by oxidative stress and inflammatory microenvironment dominated by microglia are the main obstacles in the treatment of Parkinson's disease (PD). In this study, we developed an integrated nanoreactor Q@CeBG by encapsulating CeO2 nanozyme and quercetin (Que) into glutathione-modified bovine serum albumin, and then selected focused ultrasound (FUS) to temporarily open the blood-brain barrier (BBB) to enhance the accumulation level of Q@CeBG in the brain. Q@CeBG exhibited superior multi-ROS scavenging activity. Under the assistance of FUS, Q@CeBG nanoreactor can penetrate the BBB and act on neurons as well as microglia, reducing the neuron's oxidative stress level and polarizing microglia's phenotype from proinflammatory M1 to anti-inflammatory M2. In vitro and In vivo experiments demonstrated that Q@CeBG nanoreactor with good biocompatibility exhibit outstanding neuroprotection and immunomodulatory effects. In short, this dual synergetic nanoreactor will become a reliable platform against PD.


Assuntos
Microglia , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Espécies Reativas de Oxigênio , Encéfalo , Nanotecnologia
4.
Colloids Surf B Biointerfaces ; 234: 113746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199187

RESUMO

Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Adenosina/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hipocampo , Vesículas Extracelulares/metabolismo , Cognição , AVC Isquêmico/metabolismo
5.
Int J Biol Macromol ; 253(Pt 2): 126718, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673166

RESUMO

Collagen, as the main component of human skin, plays a vital role in maintaining dermal integrity. Its loss will lead to dermis destruction and collapse, resulting in skin aging. At present, injection of exogenous collagen is an important means to delay skin aging. In this study, high-purity collagen was extracted from porcine skin. Our research revealed that it can effectively promote the adhesion and chemotaxis of HSF cells. It can also reduce the expression of ß-galactosidase, decrease ROS levels, and increase the expression of the collagen precursors, p53 and p16 in HSF cells during senescence. After local injection into the aging skin of rats, it was found that the number of cells and type I collagen fibers in the dermis increased significantly, and the arrangement of these fibers became more uniform and orderly. Moreover, the important thing is that it is biocompatible. To sum up, the porcine skin collagen we extracted is an anti-aging biomaterial with application potential.


Assuntos
Envelhecimento da Pele , Suínos , Humanos , Ratos , Animais , Derme/metabolismo , Quimiotaxia , Pele/metabolismo , Colágeno/metabolismo , Fibroblastos , Células Cultivadas
6.
J Cell Mol Med ; 27(14): 1959-1974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257051

RESUMO

Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and ß-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Trigonella , Simulação de Acoplamento Molecular , Farmacologia em Rede , Citoproteção
7.
Adv Healthc Mater ; 11(23): e2201655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153843

RESUMO

The blood-brain barrier (BBB) is a major limiting factor that prevents the treatment of Parkinson's disease (PD). In the present study, MgOp@PPLP nanoparticles are explored by using MgO nanoparticles as a substrate, polydopamine as a shell, wrapping anti-SNCA plasmid inside, and modifying polyethylene glycol, lactoferrin, and puerarin on the surface to improve the hydrophilicity, brain targeting and antioxidant properties of the particles, respectively. MgOp@PPLP exhibits superior near-infrared radiation (NIR) response. Under the guidance of photothermal effect, these MgOp@PPLP particles are capable of penetrating the BBB and be taken up by neuronal cells to exert gene therapy and antioxidant therapy. In both in vivo and in vitro models of PD, MgOp@PPLP exhibits good neuroprotective effects. Therefore, combined with noninvasive NIR radiation, MgOp@PPLP nanoplatform with good biocompatibility becomes an ideal material to combat neurodegenerative diseases.


Assuntos
Barreira Hematoencefálica , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico
8.
J Control Release ; 349: 606-616, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870568

RESUMO

Breast cancer has consistently had the highest incidence among women in the world. Tumor cell-derived extracellular vesicles (EV) have been leveraged as drug carriers for cancer treatment. Herein, we developed an efficient theranostic platform for breast cancer-specific delivery of lipophilic triphenylphosphonium (TPP)-modified therapeutic recombinant P53 proteins (TPP/P53) by breast cancer cell-derived EVs. We observed that the EVs were routinely captured by their patent cells, so when, TPP/P53 was loaded into the EVs (TPP/P53@EVs), TPP/P53 was targeted to the mitochondria of breast cancer cells, where it caused signal amplification and induced the death of breast cancer cells. Our findings demonstrated that the TPP/P53@EVs showed good tumor-targeting capability and efficiently destroyed the tumor tissues without any obvious toxicity in vivo. Therefore, our TPP/P53@EVs might provide a "drug-free" strategy for future applications in breast cancer therapy.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Portadores de Fármacos/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
J Mater Chem B ; 10(3): 418-429, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34940773

RESUMO

Breast cancer is one of the most common cancers in the world with tumor heterogeneity. Currently, cancer treatment mainly relies on surgical intervention, chemotherapy, and radiotherapy, for which the side effects, drug resistance and cost need to be resolved. In this study, we develop a natural medicine targeted therapy system. Phosphatidylcholine (PC), doxorubicin (DOX), procyanidin (PA), and epigallocatechin gallate (EGCG) are assembled and PC@DOX-PA/EGCG nanoparticles (NPs) are obtained. In addition, the HER2, ER and PR ligands were grafted on the surface of the NPs to acquire the targeted nanoparticles NP-ER, NP-ER-HER2, and NP-ER-HER2-PR. The physicochemical properties of the nanoparticles were detected and it was found that the nanoparticles are spherical and less than 200 nm in diameter. Furthermore, in vitro and in vivo results indicate that the nanoparticles can target BT-474, MCF-7, EMT-6, and MDA-MB-231 breast cancer cells, effectively inhibiting the growth of the breast cancer cells. In short, this research will provide some strategies for the treatment of heterogeneous breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Micelas , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Fosfatidilcolinas/química , Proantocianidinas/química
10.
Macromol Biosci ; 22(3): e2100440, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919323

RESUMO

In this research, resveratrol (RSV)-loaded scaffolds have been prepared to control the release of resveratrol and used to delay hepatic stellate cell (HSC) senescence in vitro. The functional carboxyl group-COOH is first introduced to the surface of poly(ε-caprolactone/d,l-lactide) (P(CL-DLLA)) under the coadministration of ultra-violet (UV) treatment and photo initiator and then resveratrol are conjugated onto the surface of the modified scaffolds through esterification. The characterization of the structure of RSV-AA-P(CL-DLLA) shows that resveratrol has been successfully conjugated onto the modified surface. Cell growth exhibits a higher level of cell viability and much more obvious agglomeration on the surface of the synthetic RSV-AA-P(CL-DLLA). Meanwhile the activity of senescence-associated ß-galactosidase (SA-ß-gal) and reactive oxygen species (ROS) is downgulated for cells on RSV-AA-P(CL-DLLA), which suggests that cell senescence is delayed on RSV-AA-P(CL-DLLA). And then it is attested that cells have a lower level of p53 but SIRT1 expression is upregulated on RSV-AA-P(CL-DLLA), which might be related to resveratrol release from RSV-AA-P(CL-DLLA). It also suggested cell senescence on RSV-AA-P(CL-DLLA) has been regulated by p53 and the SIRT1 signaling pathway. In all, the present study shows that RSV-AA-P(CL-DLLA) can be successfully prepared to promote cell growth and delay cell senescence and could be used for cell-based therapy in tissue engineering.


Assuntos
Sirtuína 1 , Proteína Supressora de Tumor p53 , Sobrevivência Celular , Senescência Celular , Resveratrol/farmacologia
11.
J Mater Chem B ; 8(48): 10990-11000, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300520

RESUMO

Bone diseases such as osteomalacia, osteoporosis, and osteomyelitis are major illnesses that threaten the health of human. This study aimed to provide an idea at the molecular level of material properties determined with UV specific surface approaches. The tert-butyl hydroperoxide (t-BHP) exposure aging model bone mesenchymal stem cells (BMSCs) were reverted by using a poly-hybrid scaffold (PS), which is a carbon nanotube (CNT) coated polycaprolactone (PCL) and polylactic acid (PLA) scaffold, combined with insulin-like growth factor-1 (IGF). Then, the region-specific PS photo-immobilized with different growth factors (GFs) was obtained by interference and diffraction of ultraviolet (UV) light. Additionally, the reverted BMSCs were regionally pattern differentiated into three kinds of cells on the GF immobilized PS (GFs/PS). In vivo, the GFs/PS accelerate bone healing in injured Sprague-Dawley (SD) rats. The data showed that GFs/PS effectively promoted the differentiation of reverted BMSCs in the designated area on 21st day. These results suggest region-specific interface immobilization of GFs concurrently differentiating reverted BMSCs into three different cells in the same scaffold. This method might be considered as a short-time, low cost, and simple operational approach to scaffold modification for tissue regeneration in the future.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Alicerces Teciduais , Raios Ultravioleta , Animais , Células da Medula Óssea/fisiologia , Células da Medula Óssea/efeitos da radiação , Regeneração Óssea/fisiologia , Regeneração Óssea/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Células Imobilizadas/fisiologia , Células Imobilizadas/efeitos da radiação , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/efeitos da radiação , Ratos , Ratos Sprague-Dawley
12.
Orthop Surg ; 12(4): 1074-1083, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32686337

RESUMO

OBJECTIVE: To examine the results of raloxifene for prevention of periprosthetic bone loss around the femoral stem in patients undergoing total hip arthroplasty (THA). METHODS: Between January 2015 and May 2017, 240 female patients between 55 and 80 years underwent primary THA and were randomly allocated to receive 60 mg raloxifene hydrochloride per day (treatment group, TG, n = 120) or placebo (control group, CG, n = 120) orally at bedtime using computer-generated randomization sequence generation. Baseline data, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), women's quality of life (QoL) score, bone mineral density (BMD) around the prosthesis, and adverse events were compared between the two groups. The measuring range of BMD around the prosthesis was divided into seven regions of interest (ROI). The sample size was calculated to detect a mean difference in BMD of 0.15 g/cm2 with a standard deviation (SD) of 0.3. The error was set at 0.05 and the power level at 90% with additional compensation for a possible dropout rate of 20%. RESULTS: A total of 240 participants in the study up to 24 months after THA. There were no significant differences in the mean BMD of all the zones between groups before surgery (all P > 0.05). However, there were significant differences in the BMD of Gruen zones 4 and 7 between groups at 6 months postoperatively (both P < 0.05); there were significant differences in Gruen zones 1, 4, 6, and 7 at 12 months postoperatively (all P < 0.01); there were significant differences in Gruen zones 1, 2, 4, 6, and 7 at 24 months postoperatively (all P < 0.001). Patients taking raloxifene reported higher QoL scores, with better improvement in BMD in all areas except in zones 3 and 5 compared with the control group. There were no significant differences in WOMAC pain (P = 0.4045), WOMAC function (P = 0.4456) and women's QoL scores (P = 0.5983) between groups before surgery. However, WOMAC pain, WOMAC function and women's QoL score in the treatment group were significantly better at all time points (all P < 0.05). Patients in the treatment group showed no increased adverse events, including cardiac events, stroke, venous thromboembolism, and gynecological cancer (all P > 0.05), but did show decreased odds of breast cancer in comparison with those using a placebo (P = 0.0437). CONCLUSION: Raloxifene can help inhibit bone loss around the prosthesis and improve the QoL of postmenopausal women after THA with no increased adverse events, and can even decrease the odds of breast cancer.


Assuntos
Artroplastia de Quadril , Reabsorção Óssea/prevenção & controle , Osteoporose/prevenção & controle , Pós-Menopausa , Complicações Pós-Operatórias/prevenção & controle , Cloridrato de Raloxifeno/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Conservadores da Densidade Óssea/uso terapêutico , Avaliação da Deficiência , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Qualidade de Vida
13.
Materials (Basel) ; 13(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024095

RESUMO

In order to obtain high-strength and high-ductility Al-Si-Cu-Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al-9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular ß-Fe to blocky π-Fe in the Al-9Si-1.2Cu-0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused ß-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al-9Si-1.2Cu-0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.

14.
Nanomedicine ; 14(4): 1123-1136, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29474924

RESUMO

Parkinson's disease (PD) is second most common neurodegenerative disorder worldwide. Although drugs and surgery can relieve the symptoms of PD, these therapies are incapable of fundamentally treating the disease. For PD patients, over-expression of α-synuclein (SNCA) leads to the death of dopaminergic neurons. This process can be prevented by suppressing SNCA over-expression through RNA interference. Here, we successfully synthesized gold nanoparticles (GNP) composites (CTS@GNP-pDNA-NGF) via the combination of electrostatic adsorption and photochemical immobilization, which could load plasmid DNA (pDNA) and target specific cell types. GNP was transfected into cells via endocytosis to inhibiting the apoptosis of PC12 cells and dopaminergic neurons. Simultaneously, GNP composites are also used in PD models in vivo, and it can successfully cross the blood-brain barrier by contents of GNP in the mice brain. In general, all the works demonstrated that GNP composites have good therapeutic effects for PD models in vitro and in vivo.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Humanos , Camundongos , Fator de Crescimento Neural/química , Doença de Parkinson/metabolismo , Plasmídeos/genética
15.
Biomacromolecules ; 19(1): 31-41, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29172501

RESUMO

Photodynamic therapy (PDT), combining the laser and photosensitizers to kill tumor cells, has the potential to address many current medical requirements. In this study, magnetic Fe3O4 nanoparticles were first employed as cores and modified with oleic acid (OA) and 3-triethoxysilyl-1-propanamine. Then, the photosensitizers phycocyanin (PC) and hematoporphyrin monomethyl ether (HMME), which might be able to stimulate the cell release of reactive oxygen species after the irradiation of a near-infrared (NIR) laser, were grafted on the surface of such nanoparticles. Our results revealed the high-efficiency inhibition of breast cancer MCF-7 cells growing upon near-infrared irradiation both in vitro and in vivo. Furthermore, it was the synergy between the natural photosensitizers PC and the synthetic photosensitizers HMME that deeply influenced such inhibition compared to the groups that used either of these medicines alone. To utilize the combination of different photosensitive agents, our study thus provides a new strategy for breast cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hematoporfirinas/uso terapêutico , Nanopartículas de Magnetita/química , Fármacos Fotossensibilizantes/química , Ficocianina/uso terapêutico , Animais , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Feminino , Hematoporfirinas/administração & dosagem , Hematoporfirinas/farmacologia , Hematoporfirinas/toxicidade , Humanos , Raios Infravermelhos , Células MCF-7 , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Ficocianina/administração & dosagem , Ficocianina/farmacologia , Ficocianina/toxicidade
16.
Theranostics ; 7(2): 344-356, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042339

RESUMO

Lewy bodies are considered as the main pathological characteristics of Parkinson's disease (PD). The major component of Lewy bodies is α-synuclein (α-syn). The use of gene therapy that targeting and effectively interfere with the expression of α-syn in neurons has received tremendous attention. In this study, we used magnetic Fe3O4 nanoparticles coated with oleic acid molecules as a nano-carrier. N-isopropylacrylamide derivative (NIPAm-AA) was photo-immobilized onto the oleic acid molecules, and shRNA (short hairpin RNA) was absorbed. The same method was used to absorb nerve growth factor (NGF) to NIPAm-AA to specifically promote neuronal uptake via NGF receptor-mediated endocytosis. Additionally, shRNA plasmid could be released into neurons because of the temperature and pH sensitivity of NIPAm-AA interference with α-syn synthesis. We investigated apoptosis in neurons with abrogated α-syn expression in vitro and in vivo. The results demonstrated that multifunctional superparamagnetic nanoparticles carrying shRNA for α-syn could provide effective repair in a PD model.


Assuntos
Produtos Biológicos/administração & dosagem , Terapia Genética/métodos , Nanopartículas de Magnetita/administração & dosagem , Doença de Parkinson/terapia , Plasmídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , alfa-Sinucleína/antagonistas & inibidores , Acrilamidas/administração & dosagem , Animais , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Endocitose , Masculino , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/administração & dosagem , Neurônios/fisiologia , RNA Interferente Pequeno/genética , alfa-Sinucleína/genética
17.
J Mater Chem B ; 5(30): 6016-6026, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264358

RESUMO

Cordycepin has been successfully used as a natural anti-cancer drug, but it is rapidly metabolized in vivo. Nanoencapsulation is thus a promising method to improve its bioavailability. In this study, we adopted a green synthesis process to develop novel self-assembling phycocyanin-dextran-cordycepin (Phy-Dex-Cord) micelles for efficient cordycepin encapsulation and delivery. We first used the Maillard reaction method to graft dextran onto phycocyanin, forming a phycocyanin-dextran complex. Through the self-assembly of the cordycepin parcel to the phycocyanin-dextran complex, the micelles were formed. Their physical and chemical properties and characterization results showed that Phy-Dex-Cord micelles have a spherical shape and consistent size distribution of about 60 nm. In addition, anti-cancer activities in vitro and in vivo revealed that the Phy-Dex-Cord micelles have a comparable or even stronger inhibitory effect against C6 cells than do free cordycepin and free phycocyanin and no side effects.

18.
Carbohydr Polym ; 139: 50-60, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26794946

RESUMO

The destruction of PVC cables by termites is a continuing and long-standing problem, which can lead to power leakage and power cut. Given the environmental demerits of insecticide overuse, alternative methods of addressing this problem are a highly desirable goal. In this study, we used photo-immobilization to develop a chitosan carrier system to help bifenthrin immobilize on the surface of the PVC substrate. The immobilization was analyzed using nuclear magnetic resonance (NMR), UV absorption, reverse-phase high-performance liquid chromatography (RP-HPLC), Raman absorption spectroscopy, and thermal gravimetric analysis (TGA). The surface structure and biological activity of the embedded and immobilized bifenthrin were examined using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photon-electron spectroscopy (XPS). Its efficacy was assessed in pest experiments. The results indicate a successful embedding and immobilization of bifenthrin. Furthermore, the chemical bonding network between AzPhchitosan, bifenthrin, and PVC is stable, guaranteeing no environmental release of bifenthrin, and also providing more efficacious protection against termites. The evidence suggests that this photo-immobilization of bifenthrin-embedded chitosan on the surface of PVC substrates is a novel and environmentally friendly technique for termite control. This paper also reports a modification of chitosan with respect to its novel application in environmental protection.


Assuntos
Azidas/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Inseticidas/química , Cloreto de Polivinila/química , Piretrinas/química , Animais , Equipamentos e Provisões Elétricas , Controle de Insetos/métodos , Isópteros , Processos Fotoquímicos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...