Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Langmuir ; 40(32): 17141-17150, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096500

RESUMO

In this work, a nonequilibrium molecular dynamics simulation is utilized to explore the effect of network structure of graphene (GE) on the thermal conductivity of the GE/polydimethylsiloxane (PDMS) composite. First, the thermal conductivity of composites rises with increasing volume fraction of GE. The heat transfer ability via the GE channel is found to be nearly the same by analyzing the GE-GE interfacial thermal resistance (ITR). More heat energy is transferred via the GE channel at the high volume fraction of GE by calculating the GE heat transfer ratio, which leads to the high thermal conductivity. Then, the thermal conductivity of composites rises with increasing stacking area between GE, which is attributed to both the strong heat transfer ability via the GE channel and the high GE heat transfer ratio. Following it, the thermal conductivity of composites first rises and then drops down with increasing defect density for a single vacancy defect while it continuously increases for a single void defect. The heat transfer ability between GE is enhanced due to the formation of interlayer covalent bonds. However, the intrinsic thermal conductivity of GE is significantly reduced for a single vacancy defect while it remains relatively well for a single void defect. As a result, the GE heat transfer ratio is maximum at the intermediate defect density for a single vacancy defect while it rises monotonically for a single void defect, which can rationalize the thermal conductivity. Meanwhile, the relationship between ITR and the number of covalent bonds can be described by an empirical equation. Finally, the thermal conductivity for the stacked structure is larger than that for the noncontact structure or the intersected structure. In summary, this work provides a clear and novel understanding of how the network structure of GE influences the thermal conductivity of the GE/PDMS composite.

2.
Langmuir ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136340

RESUMO

The introduction of nanoparticles (NPs) presents boundless possibilities for enhancing the performance of polymer nanocomposites (PNCs). Consequently, the design of novel NPs becomes of paramount significance for PNCs. In our study, we employ the dumbbell two-component model of Janus nanoparticles (JNPs) and design rigid-soft JNPs as fillers. Using coarse-grained molecular dynamics simulations, we systematically investigate the dispersion, dynamics, and mechanical properties of these novel PNCs. First, we determine the optimal dispersion conditions by studying rcutoff and εnp. The simulation indicates that when the interaction between polymer chains and JNPs is a repulsive potential, the JNPs tend to aggregate together, forming a cluster with soft NPs inside and rigid NPs outside. Conversely, under attractive interactions, JNPs show superior dispersion uniformity compared to the repulsive system, and as εnp increases, the dispersion improves. Then, the mean square displacement (MSD) indicates that JNPs effectively impede the mobility of polymer chains, with the degree of hindrance increasing as εnp grows; this effect is more pronounced in attractive systems. Comparing JNPs of different particle sizes, we find that smaller JNP systems exhibit higher temperature sensitivity. Furthermore, there exists a critical particle size (Dnp ≈ 5σ) under a constant filling fraction at which the NPs exert the most pronounced restriction effect on the polymer. Next, upon examining the mechanical behavior, we find that the rigid-soft JNPs demonstrate notable elasticity and variability compared to traditional NPs. This observation is confirmed through measurements of the bond orientation and mean square radius of gyration of the soft segments of JNPs. In summary, this research provides a comprehensive understanding of the intricate interplay among various factors, offering valuable insights for optimizing JNP dispersion and enhancing the mechanical properties of PNCs.

3.
Macromol Rapid Commun ; : e2400259, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122477

RESUMO

The thermodynamic incompatibility between the soft and hard segments of thermoplastic polyurethane (TPU) results in a microphase-separated behavior and excellent mechanical properties. However, the effect of the chain extender on the degree of microphase separation (DMS) and the resultant mechanical properties of TPU have not been well studied because of the complex interactions between the soft and hard segments. Herein, hydroxyl-terminated polybutadiene-based TPUs(HTPB-TPUs) without hydrogen bonding between the soft and hard segments are synthesized using hydroxyl-terminated polybutadiene, toluene diisocyanate, and four different chain extenders, and the effect of the chain extender structure on DMS is analyzed experimentally using a combination of analytical techniques. Furthermore, the solubility parameters of the soft and hard segments, glass transition temperatures, and hydrogen-bond density of the HTPB-TPUs, are computed using all-atom molecular dynamics simulations. The results clearly reveal that the chain extender significantly affects the DMS and thus the mechanical properties of HTPB-TPUs. This study paves the way for studying the relationship between the structure and properties of TPU.

4.
Phys Rev Lett ; 133(4): 048101, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121423

RESUMO

Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.

5.
Small ; : e2404484, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022916

RESUMO

Determining the optimal method for preparing supramolecular materials remains a profound challenge. This process requires a combination of renewable raw materials to create supramolecular materials with multiple functions and properties, including simple fabrication, sustainability, a dynamic nature, good toughness, and transparency. In this work, a strategy is presented for toughening supramolecular networks based on solid-phase chain extension. This toughening strategy is simple and environmentally friendly. In addition, a series of biobased elastomers are designed and prepared with adjustable performance characteristics. This strategy can significantly improve the transparency, tensile strength, and toughness of the synthesized elastomer. The synthesized biobased elastomers have great ductility, repairability, and recyclability, and they show good adhesion and dielectric properties. A biobased ionic skin is assembled from these biobased elastomers. Assembled ionic skin can sensitively detect external stimuli (such as stretching, bending, compression, or temperature changes) and monitor human movement. The conductive and dielectric layers of the biobased ionic skin are both obtained from renewable raw materials. This research provides novel molecular design approaches and material selection methods for promoting the development of green electronic devices and biobased elastomers.

6.
J Hazard Mater ; 477: 135253, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032179

RESUMO

Microplastics pollution in soil has become a prominent issue in the field of ecological environment. However, relevant data on the microplastics pollution characteristics in mining industry-agricultural soil ecosystems is still limited. In this study, an extensive investigation on the characteristics of microplastics pollution in typical mining-agricultural city soil was conducted, revealing abundances, features, and influencing factors of microplastics in five land use types including facility farmland (FF), traditional farmland (TF), residential land (RL), industrial land (IL), and grassland (GL). The results showed that the distribution of microplastics abundances exhibits a nonuniform pattern, and the highest microplastics abundance was found in FF (3738 ± 2097 items·kg-1) compared with the other four land use types of this study area. Moreover, the key polymers identified were polypropylene (PP) and polyethylene (PE) with a smaller size (<0.01 mm) accounting for the majority at ,45 %, primary colors of microplastics were transparent with the dominant shapes being fibers and fragments. Additionally, principal component analysis and cluster analysis characterized microplastics features across various land use patterns, revealing that agricultural plastic waste, irrigation, and fertilization may be the main the primary sources of agricultural microplastics, while domestic sewage, household waste (include construction waste), and mining transportation activities are the potential urban sources. Correlation analysis indicates a positive relationship between TN, TP, SOC, and the abundances of microplastics (P < 0.05), and a negative relationship between pH and microplastic abundances. Furthermore, Cd, Cu, and As exhibit a significant positive correlation with microplastic characteristics (P < 0.05). Notably, the distribution trends of Cd content and microplastic abundance are similar. Overall, comprehensive analysis of environmental dynamics on microplastics in agricultural soil in coal industrial cities is crucial for developing effective measures to prevent and control microplastic pollution.

7.
Small ; : e2403941, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058224

RESUMO

Photo-responsive materials have garnered significant interest for their ability to react to non-contact stimuli, though achieving self-healing under gentle conditions remains an elusive goal. In this research, an innovative and straightforward approach for synthesizing silicone elastomers is proposed that not only self-heal at room temperature but also possess unique photochromic properties and adjustable mechanical strength, along with being both transparent and reprocessable. Initially, aldehyde-bifunctional dithiophene-ethylene molecules with dialdehyde groups (DTEM) and isocyanurate (IPDI) is introduced into the aminopropyl-terminated polydimethylsiloxane (H2N-PDMS-NH2) matrix. Subsequently, palladium is incorporated to enhance coordination within the matrix. These silicone elastomers transition to a blue state under 254 nm UV light and revert to transparency under 580 nm light. Remarkably, they demonstrate excellent thermal stability at temperatures up to 100 °C and show superior fatigue resistance. The optical switching capabilities of the silicone elastomers significantly affect both their mechanical characteristics and self-healing abilities. Notably, the PDMS-DTEM-IPDI-@Pd silicone elastomer, featuring closed-loop photo-switching molecules, exhibits a fracture toughness that is 1.3 times greater and a room temperature self-healing efficiency 1.4 times higher than its open-loop counterparts. This novel photo-responsive silicone elastomer offers promising potential for applications in data writing and erasure, UV protective coatings, and micro-trace development.

8.
J Ultrasound ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060718

RESUMO

PURPOSE: The aim was to compare the use of different tools within the ImageJ program (polygon vs. segmented line) and their impact on the calculation of muscle area and echo intensity (EI) values in ultrasound imaging of the vastus lateralis muscle. METHODS: Thirteen volunteers participated in this study. Ultrasound images of the vastus lateralis muscle were acquired using 2D B-mode ultrasonography and analyzed using both the polygon and segmented line tools by the same evaluator. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) assessed the tools' reliability. Bland-Altman plots were employed to verify the agreement between measurements, and linear regression analysis determined proportional bias. A paired t-test was conducted to analyze differences between the tools. RESULTS: The reliability between tools for muscle area calculation was weak (r = 0.000; CV = 138.03 ± 0.34%), while it was excellent for EI (r = 0.871; CV = 15.19 ± 2.96%). The Bland-Altman plots indicated a large bias for muscle area (d = 195.2%) with a proportional bias (p < 0.001). For EI, the bias was (d = 15.2) with proportional bias (p = 0.028). The paired t-test revealed significant differences between the tools for area (p < 0.001) but not for EI (p = 0.060). CONCLUSION: The study found significant differences in measurements obtained with the polygon and segmented line tools in ImageJ, with the polygon tool showing higher values for muscle area and lower values for EI.

9.
ACS Appl Mater Interfaces ; 16(29): 37770-37782, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987992

RESUMO

Skin wound healing is a complex process that requires appropriate treatment and management. Using a single scaffold to dynamically manipulate angiogenesis, cell migration and proliferation, and tissue reconstruction during skin wound healing is a great challenge. We developed a hybrid scaffold platform that integrates the spatiotemporal delivery of bioactive cues with topographical cues to dynamically manipulate the wound-healing process. The scaffold comprised gelatin methacryloyl hydrogels and electrospun poly(ε-caprolactone)/gelatin nanofibers. The hydrogels had graded cross-linking densities and were loaded with two different functional bioactive peptides. The nanofibers comprised a radially aligned nanofiber array layer and a layer of random fibers. During the early stages of wound healing, the KLTWQELYQLKYKGI peptide, which mimics vascular endothelial growth factor, was released from the inner layer of the hydrogel to accelerate angiogenesis. During the later stages of wound healing, the IKVAVS peptide, which promotes cell migration, synergized with the radially aligned nanofiber membrane to promote cell migration, while the nanofiber membrane also supported further cell proliferation. In an in vivo rat skin wound-healing model, the hybrid scaffold significantly accelerated wound healing and collagen deposition, and the ratio of type I to type III collagen at the wound site resembled that of normal skin. The prepared scaffold dynamically regulated the skin tissue regeneration process in stages to achieve rapid wound repair with clinical application potential, providing a strategy for skin wound repair.


Assuntos
Gelatina , Hidrogéis , Nanofibras , Cicatrização , Nanofibras/química , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Gelatina/química , Ratos , Movimento Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Humanos , Alicerces Teciduais/química , Pele/efeitos dos fármacos , Pele/lesões , Poliésteres/química , Peptídeos/química , Peptídeos/farmacologia , Metacrilatos/química , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Laminina , Fragmentos de Peptídeos
10.
Ecotoxicol Environ Saf ; 280: 116546, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843747

RESUMO

In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.


Assuntos
Aquicultura , Minas de Carvão , Monitoramento Ambiental , Peixes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise , Peixes/metabolismo , China , Monitoramento Ambiental/métodos
11.
Adv Sci (Weinh) ; : e2401800, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924313

RESUMO

Tremendous popularity is observed for multifunctional flexible electronics with appealing applications in intelligent electronic skins, human-machine interfaces, and healthcare sensing. However, the reported sensing electronics, mostly can hardly provide ultrasensitive sensing sensitivity, wider sensing range, and robust cycling stability simultaneously, and are limited of efficient heat conduction out from the contacted skin interface after wearing flexible electronics on human skin to satisfy thermal comfort of human skin. Inspired from the ultrasensitive tactile perception microstructure (epidermis/spinosum/signal transmission) of human skin, a flexible comfortably wearable ultrasensitive electronics is hereby prepared from thermal conductive boron nitride nanosheets-incorporated polyurethane elastomer matrix with MXene nanosheets-coated surface microdomes as epidermis/spinosum layers assembled with interdigitated electrode as sensing signal transmission layer. It demonstrates appealing sensing performance with ultrasensitive sensitivity (≈288.95 kPa-1), up to 300 kPa sensing range, and up to 20 000 sensing cycles from obvious contact area variation between microdome microstructures and the contact electrode under external compression. Furthermore, the bioinspired electronics present advanced thermal management by timely efficient thermal dissipation out from the contacted skin surface to meet human skin thermal comfort with the incorporated thermal conductive boron nitride nanosheets. Thus, it is vitally promising in wearable artificial electronic skins, intelligent human-interactive sensing, and personal health management.

12.
Epigenomics ; 16(10): 715-731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869474

RESUMO

Aim: Liquid biopsies analyzing cell-free DNA (cfDNA) methylation in plasma offer a noninvasive diagnostic for diseases, with the potential of aging biomarkers underexplored. Methods: Utilizing enzymatic methyl-seq (EM-seq), this study assessed cfDNA methylation patterns in aging with blood from 35 healthy individuals. Results: It found aging signatures, including higher cfDNA levels and variations in fragment sizes, plus approximately 2000 age-related differentially methylated CpG sites. A biological age predictive model based on 48 CpG sites showed a strong correlation with chronological age, verified by two datasets. Age-specific epigenetic shifts linked to inflammation were revealed through differentially methylated regions profiling and Olink proteomics. Conclusion: These findings suggest cfDNA methylation as a potential aging biomarker and might exacerbate immunoinflammatory reactivity in older individuals.


Our bodies undergo many changes as we age, some of which might affect our health. To better understand these changes, scientists study something called 'cell-free DNA' (cfDNA) in our blood. This cfDNA can give us clues about our health and the risk of diseases like cancer or heart conditions.In our research, we analyzed cfDNA from the blood of 35 people to identify patterns associated with aging. We discovered that approximately 2000 specific spots in our DNA change in a way that's linked to aging. These changes might help us figure out someone's biological age ­ essentially, how old their body seems based on various health factors, which can differ from their actual age.We also found that these DNA changes could indicate how aging might make the body's defense system ­ which fights off diseases ­ react more intensely. Understanding this could be crucial for managing health as we get older.Our study suggests that cfDNA could be a useful marker for aging, offering a new approach to understanding and possibly managing the health effects associated with growing older.


Assuntos
Envelhecimento , Ácidos Nucleicos Livres , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Inflamação , Humanos , Envelhecimento/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Inflamação/genética , Masculino , Idoso , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Idoso de 80 Anos ou mais
13.
Langmuir ; 40(22): 11470-11480, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768447

RESUMO

The inclusion of sacrificial hydrogen bonds is crucial for advancing high-performance rubber materials. However, the molecular mechanisms governing the impact of these bonds on material properties remain unclear, hindering progress in advanced rubber material research. This study employed all-atom molecular dynamics simulations to thoroughly investigate how hydrogen bonds affect the structure, dynamics, mechanics, and linear viscoelasticity of rubber materials. As the modified repeating unit ratio (ß) increased, both interchain and intrachain hydrogen bond content rose, with interchain bonds playing a predominant role. This physical cross-linking network formed through interchain hydrogen bonds restricts molecular chain movement and relaxation and raises the glass transition temperature of rubber. Within a certain content of hydrogen bonds, the mechanical strength increases with increasing ß. However, further increasing ß leads to a subsequent decrease in the mechanical performance. Optimal mechanical properties were observed at ß = 6%. On the other hand, a higher ß value yields an elevated stress relaxation modulus and an extended stress relaxation plateau, signifying a more complex hydrogen-bond cross-linking network. Additionally, higher ß increases the storage modulus, loss modulus, and complex viscosity while reducing the loss factor. In summary, this study successfully established the relationship between the structure and properties of natural rubber containing hydrogen bonds, providing a scientific foundation for the design of high-performance rubber materials.

14.
J Multidiscip Healthc ; 17: 2175-2184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736540

RESUMO

With the continuous development and progress of medicine, there are many methods for the treatment of temporomandibular disorders, among which temporomandibular joint lavage is also constantly developed. In the past century, through the efforts of some scholars and clinical summary, the understanding of this disease has been deepened and broadened. At present, through continuous exploration of the treatment methods, the lavage is relatively mature, and has achieved good clinical results. In this paper, the application of temporomandibular joint lavage in the treatment of temporomandibular joint disorders, its treatment methods, treatment mechanism, the auxiliary of other drugs, indications, complications and so on were discussed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38758147

RESUMO

Objective: To evaluate the implementation and effectiveness of progressive rehabilitation nursing in patients undergoing modified radical mastectomy for breast cancer. Methods: A total of 70 patients undergoing modified radical mastectomy for breast cancer in our hospital were selected as the research subjects, and they were randomly divided into a control group and an observation group, with 35 patients in each group. The control group received routine rehabilitation nursing intervention after surgery, while the observation group received progressive rehabilitation nursing intervention based on the control group's nursing. The quality of life, self-care ability, mental state, and incidence of complications were compared between the two groups. Results: Before the intervention, the two groups had no significant difference in the quality of life (P > .05). After the intervention, the quality of life in the observation group was significantly better than that in the control group (P < .05). Before the intervention, the two groups had no significant difference in the self-care ability (P > .05). After the intervention, the self-care ability in the observation group was significantly better than that in the control group (P < .05). Before the intervention, the two groups had no significant difference in the SAS and SDS scores (P > .05). After the intervention, the SAS and SDS scores in the observation group were significantly lower than those in the control group (P < .05). The incidence of complications in the control group was 22.86%, while that in the observation group was 5.71%. The incidence of complications in the observation group was significantly lower than in the control group (P < .05). Conclusion: Compared with routine nursing intervention, the implementation of progressive rehabilitation nursing intervention can further improve the quality of life, self-care ability, and mental state of patients undergoing modified radical mastectomy for breast cancer and reduce the risk of related complications, which helps promote the recovery process of patients and is worthy of clinical promotion and application.

16.
Macromol Rapid Commun ; : e2400295, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771981

RESUMO

Theoretically, separating the positive and negative charge centers of the chain segments of dielectric elastomers (DEs) is a viable alternative to the conventional decoration of chain backbone with polar handles, since it can dramatically increase the dipole vector and hence the dielectric constant (ε') of the DEs while circumvent the undesired impact of the decorated polar handles on the dielectric loss (tan δ). Herein, a novel and universal method is demonstrated to achieve effective separation of the charge centers of chain segments in homogeneous DEs by steric hindrance engineering, i.e., by incorporating a series of different included angle-containing building blocks into the networks. Both experimental and simulation results have shown that the introduction of these building blocks can create a spatially fixed included angle between two adjacent chain segments, thus separating the charge center of the associated region. Accordingly, incorporating a minimal amount of these building blocks (≈5 mol%) can lead to a considerably sharp increase (≈50%) in the ε' of the DEs while maintaining an extremely low tan δ (≈0.006@1 kHz), indicating that this methodology can substantially optimize the dielectric performance of DEs based on a completely different mechanism from the established methods.

17.
Nanoscale ; 16(23): 11187-11202, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771650

RESUMO

This research introduces a method to enhance the mechanical properties of elastomers by grafting polymer chains onto single-chain flexible nanoparticles (SCNPs) and incorporating dynamic functional groups. Drawing on developments in grafting polymers onto hard nanoparticle fillers, this method employs the distinct flexibility of SCNPs to diminish heterogeneity and enhance core size control. We use molecular dynamics (MD) simulations for a mesoscale analysis of structural properties, particularly the effects of dynamic functional group quantities and their distribution. The findings demonstrate that increased quantities of functional groups are correlated with enhanced mechanical strength and toughness, showing improved stress-strain responses and energy dissipation capabilities. Moreover, the uniformity in the distribution of these functional groups is crucial, promoting a more cohesive and stable dynamic bonding network. The insights gained from MD simulations not only advance our understanding of the microstructural control necessary for optimizing macroscopic properties, but also provide valuable guidance for the design and engineering of advanced polymer nanocomposites, thereby enhancing the material performance through strategic molecular design.

18.
J Neurol ; 271(8): 4925-4932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38753228

RESUMO

BACKGROUND: There is a lack of data regarding patients aged 90 years or older undergoing mechanical thrombectomy and their predictors of futile recanalization. AIMS: We sought to evaluate the predictors of futile recanalization in patients ≥ 90 years with large vessel occlusion undergoing mechanical thrombectomy. METHODS: This multi-center observational retrospective study included patients ≥ 90 years consecutively treated with mechanical thrombectomy in four thrombectomy capable centers between January 1st, 2016 and 30th March 2023. Futile recanalization was defined as large vessel occlusion patients experiencing a 90-day poor outcome (mRS 3-6) despite successful recanalization (mTICI ≥ 2b) after mechanical thrombectomy. RESULTS: Our cohort included 139 patients ≥ 90 years with acute ischemic stroke due to anterior circulation large vessel occlusion treated with mechanical thrombectomy. One hundred seventeen of one hundred thirty-nine patients ≥ 90 years who achieved successful recanalization were included in the analysis (seventy-six female (64.9%)), of whom thirty-one (26.49%) experienced effective recanalization and eighty-six (73.51%) experienced futile recanalization. Patients with futile recanalization had higher NIHSS on admission (p < 0.001); they were less frequently treated with intravenous thrombolysis (p = 0.048), had more often general anesthesia (p = 0.011), and longer door to groin puncture delay (p = 0.002). Univariable regression analysis showed that use of intravenous thrombolysis (0.29, 95% CI 0.02-0.79, p = 0.034) and site of occlusion distal vs proximal (0.34, 95% CI 0.11-0.97, p = 0.044) were associated with reduced probability of futile recanalization while NIHSS on admission (1.29, 95% CI 1.16-1.45, p < 0.001), NIHSS at 24 h (1.15, 95% CI 1.07-1.25, p = 0.002), type of anesthesia used (4.18, 95% CI 1.57-11.08, p = 0.004), and door to groin puncture time (1.02, 95% CI 1.00-1.05, p = 0.005) were associated with increased probability of futile recanalization. Multivariable regression analysis showed that use of intravenous thrombolysis (0.44, 95% CI 0.09-0.88, p = 0.039) was associated with reduced probability of futile recanalization. CONCLUSION: Our study seems to suggest that mechanical thrombectomy with intravenous thrombolysis is associated with reduced probability of futile recanalization in a multi-center cohort of patients aged 90 years or older.


Assuntos
AVC Isquêmico , Futilidade Médica , Trombectomia , Humanos , Feminino , Masculino , Idoso de 80 Anos ou mais , Estudos Retrospectivos , AVC Isquêmico/cirurgia , AVC Isquêmico/terapia , Resultado do Tratamento
19.
Angew Chem Int Ed Engl ; 63(30): e202405287, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712847

RESUMO

Marangoni self-propulsion refers to motion of liquid or solid driven by a surface tension gradient, and has applications in soft robots/devices, cargo delivery, self-assembly etc. However, two problems remain to be addressed for motion control (e.g., ON-OFF) with conventional surfactants as Marangoni fuel: (1) limited motion lifetime due to saturated interfacial adsorption of surfactants; (2) in- situ motion stop is difficult once Marangoni flows are triggered. Instead of covalent surfactants, supra-amphiphiles with hydrophilic and hydrophobic parts linked noncovalently, hold promise to solve these problems owing to its dynamic and reversible surface activity responsively. Here, we propose a new concept of 'supra-amphiphile fuel and switch' based on the facile synthesis of disodium-4-azobenzene-amino-1,3-benzenedisulfonate (DABS) linked by a Schiff base, which has amphiphilicity for self-propulsion, hydrolyzes timely to avoid saturated adsorption, and provides pH-responsive control over ON-OFF motion. The self-propulsion lifetime is extended by 50-fold with DABS and motion control is achieved. The mechanism is revealed with coupled interface chemistry involving two competitive processes of interfacial adsorption and hydrolysis of DABS based on both experiments and simulation. The concept of 'supra-amphiphile fuel and switch' provides an active solution to prolong and control Marangoni self-propulsive devices for the advance of intelligent material systems.

20.
ACS Omega ; 9(12): 13897-13905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559937

RESUMO

Shock-absorbing materials play a vital role in various industrial sectors, including construction and transportation. Among these materials, natural rubber (NR) stands out due to its exceptional elastic and mechanical properties, coupled with its robust crack resistance. Nevertheless, with the rising demand for enhanced damping capacities, there is a need to further optimize the damping performance of NR. One direct approach is to blend it with high-damping rubber. Butyl rubber (IIR) is a prominent member of the high-damping rubber category. Integrating IIR effectively with the NR, however, presents challenges. These challenges arise from IIR's inherent characteristics, such as its low unsaturation, slower vulcanization rate, and restricted compatibility with NR. Addressing these challenges, our study employed isoprene and isobutene to synthesize a variant of butyl rubber with a higher degree of unsaturation-achieving an unsaturation level between 4 and 6 mol %. Notably, this heightened unsaturation significantly expedited the curing time of IIR and facilitated the concurrent vulcanization of both IIR and NR. Utilizing atomic force microscopy, we observed that the introduction of unsaturated double bonds ameliorated the compatibility between NR and IIR, leading to an interfacial region extending up to 1000 nm. Our tests using a dynamic mechanical analyzer and rubber processing analyzer demonstrated the material's damping temperature range. Furthermore, there was a noticeable rise in the loss factor (tan δ) at ambient temperature, which remains over 0.1 across both a frequency window of 0.2 to 5 Hz and a strain spectrum of 10 to 200%. This tan δ enhancement ensured the potential of these rubber composites for shock-absorbing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA