Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407063, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898543

RESUMO

Developing real-time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large-scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon-based materials to mass-produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one-step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post-modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF-based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia-reperfusion pathological processes.

2.
J Am Chem Soc ; 146(6): 3836-3843, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306697

RESUMO

Modulating the electronic structure of metal nanoparticles via metal-support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating the catalytic properties of electrochemiluminescence (ECL) remain elusive. Here, we find that the use of graphdiyne (GDY) as the substrate for electroless deposition of Pd nanoparticles (Pd/GDY) produces the most pronounced anodic signal enhancement in luminol-dissolved oxygen (O2) ECL system as co-reactant accelerator over other carbon-based Pd composite nanomaterials. Pd/GDY exhibits electrocatalytic activity for the reduction of O2 through a four-electron pathway at approximately -0.059 V (vs Ag/AgCl) in neutral solution forming reactive oxygen species (ROS) as intermediates. The study shows that the interaction of Pd and GDY increases the amount and stability of ROS on the Pd/GDY electrode surface and promotes the reaction of ROS and luminol anion radical to generate excited luminol, which significantly boosts the luminol anodic ECL emission. Based on quenching of luminol ECL through the consumption of ROS by antioxidants, we develop a platform for the detection of intracellular antioxidants. This study provides an avenue for the development of efficient luminol ECL systems in neutral media and expands the biological application of ECL systems.

3.
Angew Chem Int Ed Engl ; 63(12): e202318973, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38272831

RESUMO

Spreading depolarization (SD) is one of the most common neuropathologic phenomena in the nervous system, relating to numerous diseases. However, real-time monitoring the rapid chemical changes during SD to probe the molecular mechanism remains a great challenge. We develop a potentiometric dual-channel microsensor for simultaneous monitoring of H2 S and pH featuring excellent selectivity and spatiotemporal resolution. Using this microsensor we first observe real time changes of H2 S and pH in the rat brain induced by SD. This changes of H2 S are completely suppressed when the rat pre-treats with aminooxyacetic acid (AOAA), a blocker to inhibit the H2 S-producing enzyme, indicating H2 S fluctuation might be related to enzyme-dependent pathway during SD and less pH-dependent. This study provides a new perspective for studying the function of H2 S and the molecular basis of SD-associated diseases.


Assuntos
Encéfalo , Ratos , Animais , Potenciometria , Concentração de Íons de Hidrogênio
4.
Talanta ; 265: 124785, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348351

RESUMO

Disulfide bonds exist widely in channel protein and play an essential role in matter exchange and signal transduction (e.g., rhodopsin, canonical transient receptor potential 5 (TRPC5)). The research on disulfide bond in nanochannel is significant for the cognition of their biological functions. However, the fragility of biological channel limits the in-situ study and practical application. Herein, an innovative biologically-inspired artificial nanochannel based on disulfide bond (NCDS) with excellent durability, adjustable surface property is proposed. The constructed NCDS has a multi-response to UV-light, thiol (e.g., cysteine (Cys)) or pH stimulation, and can obtain reversibility after regulation by hydrogen peroxide (H2O2) or H+. The biomimetic NCDS shows great potential in biosensor and intelligent response design. This study also shines new light to channel protein based on disulfide bond that despite the nanochannel has specificity, it will be modulated by the change of nature environment, such as UV-light and chemical microenvironment (e.g., redox state and pH), which might be the reason of some disease.

5.
Anal Chem ; 95(22): 8586-8595, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37213133

RESUMO

In vivo electrochemical analysis is of great significance in understanding the dynamics of various physiological and pathological activities. However, the conventional microelectrodes for electrochemical analysis are rigid and permanent, which comes with increased risks for long-term implantation and secondary surgery. Here, we develop one biodegradable microelectrode for monitoring the dynamics of extracellular Ca2+ in rat brain. The biodegradable microelectrode is prepared by sputtering gold nanoparticles (AuNPs) on a wet-spun flexible poly(l-lactic acid) (PLLA) fiber for conduction and transduction and coating a Ca2+ ion-selective membrane (ISM) with a PLLA matrix on the PLLA/AuNPs fiber, forming PLLA/AuNPs/Ca2+ISME (ISME = ion-selective microelectrode). The prepared microelectrode shows excellent analytical properties including a near-Nernst linear response toward Ca2+ over the concentration range from 10 µM to 50 mM, good selectivity, and long-term stability for weeks as well as biocompatibility and biodegradability. The PLLA/AuNPs/Ca2+ISME can monitor the dynamics of extracellular Ca2+ following spreading depression induced by high potassium even if in the fourth day. This study provides a new design strategy for the biodegradable ISME and promotes the development of biodegradable microelectrodes for long-term monitoring of chemical signals in brain.


Assuntos
Ouro , Nanopartículas Metálicas , Ratos , Animais , Microeletrodos , Ouro/química , Encéfalo
6.
Anal Chem ; 95(6): 3390-3397, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36725686

RESUMO

Passivation of electrodes caused by nonspecific adsorption of protein can dramatically reduce sensing sensitivity and accuracy, which is a great challenge for in vivo neurochemical monitoring. However, most antipassivation strategies are not suitable to carbon fiber microelectrodes (CFMEs) for in vivo measurement, and these methods also do not work on electrochemical biosensors that fix biometric elements. In this study, we demonstrate that chitosan hydrogel-coated microelectrodes can avoid the current passivation caused by protein adsorption on the surface of carbon fiber because the chitosan hydrogel prepared by local pH gradient caused by hydrogen evolution reaction has three-dimensional networks containing large amounts of water. The highly hydrophilic three-dimensional structure of hydrogel not only forms a biocompatible interface to confine enzymes but also keeps the fast mass transfer of analytes, such as dopamine, ascorbic acid, and glucose. The consistency of the precalibration and postcalibration of the prepared sensor enables in vivo amperometric detection of both electroactive species based on their redox property and electroinactive species based on the enzyme. This study provides a simple and versatile strategy to constitute an amperometric sensor interface to resist passivation of protein adsorption in a complex biological environment such as the brain.


Assuntos
Técnicas Biossensoriais , Quitosana , Microeletrodos , Fibra de Carbono , Hidrogéis , Quitosana/química , Oxirredução , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas
7.
Chem Commun (Camb) ; 59(14): 1959-1962, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722985

RESUMO

One potentiometric nanosensor for monitoring intracellular hydrogen sulfide (H2S) with fast potential response, high selectivity and excellent antifouling properties was developed. This study constructs a powerful tool to real-time track the changes of intracellular H2S in situ, promoting the future studies of physiologically relevant processes.


Assuntos
Sulfeto de Hidrogênio , Análise de Célula Única , Nanotecnologia
8.
Angew Chem Int Ed Engl ; 62(16): e202300083, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807970

RESUMO

Reactive oxygen species (ROS)-based therapeutic strategies play an important role in cancer treatment. However, in situ, real-time and quantitative analysis of intracellular ROS in cancer treatment for drug screening is still a challenge. Herein we report one selective hydrogen peroxide (H2 O2 ) electrochemical nanosensor, which is prepared by electrodeposition of Prussian blue (PB) and polyethylenedioxythiophene (PEDOT) onto carbon fiber nanoelectrode. With the nanosensor, we find that the level of intracellular H2 O2 increases with NADH treatment and that increase is dose-dependent to the concentration of NADH. High-dose of NADH (above 10 mM) can induce cell death and intratumoral injection of NADH is validated for inhibiting tumor growth in mice. This study highlights the potential of electrochemical nanosensor for tracking and understanding the role of H2 O2 in screening new anticancer drug.


Assuntos
Peróxido de Hidrogênio , NAD , Camundongos , Animais , Espécies Reativas de Oxigênio , Morte Celular , Peróxido de Hidrogênio/metabolismo
9.
Langmuir ; 39(5): 1719-1729, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689914

RESUMO

In vivo sensing based on implantable microelectrodes has been widely used to monitor neurochemicals due to its high spatial and temporal resolution and engineering interface designability, which has become a powerful drive to decode the mysteries of degenerative diseases and regulate neural activity. Over the past few decades, with the development of a variety of advanced materials and technologies, encouraging progress has been made in quantifying various neurochemical transients. However, because of the complex chemical atmosphere including thousands of small and large biomolecules and the inherent low mechanical property of brain tissue, the design of a compatible microelectrode for the in vivo electrochemical tracking of neurochemicals with high selectivity and stability still faces great challenges. This Perspective presents a brief account of recent representative progress in the rational regulation of the microelectrode interface to resolve the questions of selectivity and sensitive decrease resulting from antiprotein adsorption, and how to decrease the mechanical mismatch of an implanted electrode with that of brain tissue. Possible future research directions on further addressing the above key issues and a more biocompatible microelectrode for in vivo long-time electrochemical analysis are also discussed.


Assuntos
Microeletrodos , Eletrodos Implantados
10.
Angew Chem Int Ed Engl ; 61(41): e202204344, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35999188

RESUMO

Challenges remain in establishing a universal method to precisely tune electrochemical properties of conducting polymers for multifunctional neurosensing with high selectivity and sensitivity. Here, we demonstrate a facile and general approach to achieving synergistic charge percolation in conducting polymers (i.e., poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) by incorporating conductive catalysts (i.e., carbon nanotubes, CNTs) and post-processing. The approach shows synergistic effects: (i) CNTs and post-processing together promote PEDOT ordered interconnection for highly efficient charge percolation that accelerates electrochemical kinetics; (ii) CNTs catalyze the electrooxidation of vitamin C for selective electrochemical sensing; (iii) CNTs enhance the charge storage/injection capacity of PEDOT:PSS. The prepared CNT-PEDOT:PSS fiber mechanically matches with neural tissues and is proved to be a biocompatible versatile microsensor capable of high-performance neurosensing in vivo.


Assuntos
Nanotubos de Carbono , Polímeros , Ácido Ascórbico , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Nanotubos de Carbono/química , Polímeros/química
11.
Angew Chem Int Ed Engl ; 61(28): e202204485, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35488432

RESUMO

Graphdiyne (GDY), a well-known 2D carbon allotrope, demonstrates increasing fantastic performance in various fields owing to its outstanding electronic properties. Owing to its unique properties, electrochemiluminescence (ECL) technology is one powerful tool for understanding fundamental questions and for ultrasensitive sensing and imaging. Here, we firstly find that GDY without any functionalization or treatment shows a strong ECL emission with potassium persulfate (K2 S2 O8 ) as coreactant, which is totally different with other carbon allotropes. Mechanistic study indicates that the ECL emission of GDY is generated by the surface state transition. Interestingly, ECL is generated at 705 nm in the near infrared region with an ECL efficiency of 424 % compared to that of Ru(bpy)3 Cl2 /K2 S2 O8 . The study demonstrates a new character of GDY in ECL investigation and sets the stage for the development of GDY for emerging applications, including imaging and light-emitting devices.

12.
Angew Chem Int Ed Engl ; 61(16): e202115074, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138023

RESUMO

In vivo microelectrodes are essential for neuroscience studies. However, development of microelectrodes with both flexibility and multifunctionality for recording chemical and electrical signals in the same extracellular microspace and modulating neural activity remains challenging. Here, we find that pure PEDOT:PSS fibers (i.e., support-free) exhibit high conductivity, fast heterogeneous electron transfer, and suitable charge storage and injection capabilities, and can thus directly act as microelectrodes not only for chemical and electrophysiological recording in the same extracellular microspace, but also for electromodulation of neural microcircuit activity. Moreover, the microelectrodes mechanically match with neural tissues, exhibiting less foreign body responses. Given the multifunctionality, flexibility, and biocompatibility, the support-free PEDOT:PSS-based microelectrodes offer a new avenue to microelectrode technology for neuroscience research, diagnostics and therapeutics.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Condutividade Elétrica , Microeletrodos
13.
Angew Chem Int Ed Engl ; 61(1): e202111853, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734656

RESUMO

Alpha-synuclein (α-Syn) localizes at presynaptic terminal and modulates synaptic functions. Increasing evidence demonstrate that α-Syn oligomers, forming at the early of aggregation, are cytotoxic and is thus related to brain neurodegenerative diseases. Herein, we find that vitamin D (VD) can reduce neurocytotoxicity. The reduced neurocytotoxicity might be attributed to the less amount of large-sized α-Syn oligomers inhibited by VD, measured by electrochemical collision at single particle level, which are not observable with traditionally ensembled method. Single-cell amperometry (SCA) results show that VD can recover the amount of neurotransmitter release during exocytosis induced by α-Syn oligomers, further verifying the neuroprotection of VD. Our study reveals the neuroprotective role of VD through inhibiting α-Syn aggregation, which is envisioned to be of great importance in treatment and prevention of the neurodegenerative diseases.


Assuntos
Técnicas Eletroquímicas , Vitamina D/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Linhagem Celular Tumoral , Exocitose/efeitos dos fármacos , Humanos , Modelos Moleculares , Agregados Proteicos/efeitos dos fármacos , Vitamina D/química , alfa-Sinucleína/metabolismo
14.
ACS Sens ; 6(7): 2757-2762, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191484

RESUMO

Electrochemical tracking of redox-inactive neurochemicals remain a challenge due to chemical inertness, almost no Faraday electron transfer for these species, and the complex brain atmosphere. In this work, we demonstrate a low-cost, simple-making liquid/liquid interface microsensor (LLIM) to monitor redox-inactive neurochemicals in the rat brain. Taking choline (Ch) as an example, based on the difference in solvation energies of Ch in cerebrospinal fluid (aqueous phase) and 1,2-dichloroethane (1,2-DCE; organic phase), Ch is recognized in the specific ion-transfer potential and distinctive ion-transfer current signals. The LLIM has an excellent response to Ch with good linearity and selectivity, and the detection limit is 0.37 µM. The LLIM can monitor the dynamics of Ch in the cortex of the rat brain by both local microinfusion and intraperitoneal injection of Ch. This work first demonstrates that the LLIM can be successfully applied in the brain and obtain electrochemical signals in such a sophisticated system, allowing one new perspective of sensing at the liquid/liquid interface for nonelectrically active substances in vivo to understand the physiological function of the brain.


Assuntos
Química Encefálica , Encéfalo , Animais , Oxirredução , Ratos
15.
Nanoscale Res Lett ; 16(1): 79, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33939029

RESUMO

The electroactive ß-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content ß-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.

16.
Anal Chem ; 93(18): 7063-7070, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900732

RESUMO

Hydrogen sulfide (H2S) plays a pivotal role in gas signal transduction, neuroprotection, and regulation of physiological and pathological processes. However, in vivo tracking the dynamic of hydrogen sulfide in the complex brain environment still faces huge challenges. This study demonstrates a new potentiometric method to monitor in vivo the dynamics of hydrogen sulfide in the rat brain using silver nanoparticles (AgNPs)-modified carbon fiber microelectrodes (AgNPs/CFE) pretreated with Na2S (i.e., Ag2S/AgNPs/CFE), which acts as a solid-contact and ion-selective microelectrode. The Ag2S/AgNPs/CFE exhibits good potential response toward hydrogen sulfide in the range of 2.5-160 µM, with a detection limit of 0.8 µM. Because of the presence of Ag2S, the Ag2S/AgNPs/CFE shows good selectivity to hydrogen sulfide, avoiding the interference from coexistent electroactive neurochemicals and the analogies, such as ascorbic acid and cysteine in the central nervous system. This good selectivity combined with the reversibility, protein antifouling, and biocompatibility of the microelectrode enables the Ag2S/AgNPs/CFE to detect hydrogen sulfide in the rat brain during local microinfusion of Na2S and the change in pH. Our study provides a reliable method to track hydrogen sulfide selectively in vivo, which will help to explore the function of hydrogen sulfide in neurophysiology and pathology.


Assuntos
Sulfeto de Hidrogênio , Nanopartículas Metálicas , Animais , Encéfalo , Microeletrodos , Ratos , Prata
17.
ACS Sens ; 6(2): 546-552, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33346640

RESUMO

Physical exercise (PE) has been drawing increasing attention to prevent and alleviate neural damage of brain diseases; however, in vivo sensing of the neuroprotection ability of PE remains a challenge. Here, we find that ascorbate can be used as a small molecular index for neuroprotective function of PE and the neuroprotection ability of PE can thus be in vivo monitored with an online electrochemical system (OECS) in freely moving animals. With the OECS as the sensing system, we find that the concentration of ascorbate in the microdialysate from the striatum increases greatly in kainic acid (KA)-induced seizure rats and reaches twice the basal level (i.e., 214.4 ± 32.7%, p < 0.001, n = 4) at a time point 90 min after KA microinjection. Such an increase of ascorbate is obviously attenuated (i.e., 153.6 ± 23.9% of the basal level, p < 0.05, n = 3) after PE, showing the neuroprotective activity of PE. This finding is believed to be significant in providing chemical insight into the neuroprotection ability of PE.


Assuntos
Neuroproteção , Condicionamento Físico Animal , Animais , Ácido Ascórbico , Ácido Caínico/toxicidade , Ratos , Convulsões/induzido quimicamente
18.
Angew Chem Int Ed Engl ; 59(52): 23445-23449, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32939918

RESUMO

Electrochemical sensing performance is often compromised by electrode biofouling (e.g., proteins nonspecific binding) in complex biological fluids; however, the design and construction of a robust biointerface remains a great challenge. Herein, inspired by nature, we demonstrate a robust polydopamine-engineered biointerfacing, to tailing zwitterionic molecules (i.e., sulfobetaine methacrylate, SBMA) through Michael Addition. The SBMA-PDA biointerface can resist proteins nonspecific binding in complex biological fluids while enhancing interfacial electron transfer and electrochemical stability of the electrode. In addition, this sensing interface can be integrated with tissue-implantable electrode for in vivo analysis with improved sensing performance, preserving ca. 92.0% of the initial sensitivity after 2 h of implantation in brain tissue, showing low acute neuroinflammatory responses and good stability both in normal and in Parkinson's disease (PD) rat brain tissue.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Técnicas Eletroquímicas/métodos , Indóis/química , Polímeros/química , Animais , Ratos , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 59(43): 18996-19000, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32662903

RESUMO

The selective sensing of neurochemicals is essential for understanding the chemical basis of brain function and pathology. Interfacing the excellent recognition features of aptamers with in vivo compatible carbon fiber microelectrode (CFE)-based electroanalytical systems offers a plausible means to achieve this end. However, this is challenging in terms of coupling chemistry, stability, and versatility. Here, we present a new interfacial functionalization strategy based on the assembly of aptamer cholesterol amphiphiles (aptCAs) on the alkyl chain-functionalized CFE. The noncovalent cholesterol-alkyl chain interactions effectively immobilize aptamers onto the CFE surface, allowing the generation of a highly selective system for probing neurochemical dynamics in living systems and opening up a vast array of new opportunities for designing in vivo sensors for exploring brain chemistry.


Assuntos
Aptâmeros de Nucleotídeos/química , Dopamina/análise , Microeletrodos , Neurotransmissores/análise , Animais , Química Encefálica , Limite de Detecção , Microscopia de Fluorescência , Ratos , Propriedades de Superfície
20.
Nanoscale Res Lett ; 15(1): 106, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399818

RESUMO

LiNbO3 (LN) crystal has been widely used as a pyroelectric material due to its spontaneous electric polarization, which could be recharged easily and can directly convert heat energy into electricity. LN crystal's heat-resistant, low-cost, and low dielectric loss properties make it possible for its applications in room-temperature pyroelectric devices and thermal sensors. However, LN crystal suffers from fragility, inflexibility, and other mechanical properties, which limit its suitability for many applications in various fields. In this study, the LN modified flexible pyroelectric films, composed of LN micro-particles, polypropylene (PP) matrix, and multiwalled carbon nanotubes (MWCNTs), are successfully fabricated. The pyroelectric effects of LN crystal and LN/PP/MWCNT composite films are characterized by monitoring the patterned self-assembly of nanoparticles and the output pyroelectric currents. The excellent pyroelectric properties of the composites have potential applications in energy harvesters or sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...