Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.216
Filtrar
1.
Sci Total Environ ; 951: 175398, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128516

RESUMO

Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.

2.
ACS Nano ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146319

RESUMO

Ion transport is a critical phenomenon underpinning numerous biological, physical, and chemical systems. Proton transistors leveraging proton transport face significant limitations, such as a low on-off ratio and deficient carrier mobility, which restrict their applicability in biological and other scenarios. This study explores the use of two-dimensional (2D) vacancy-residing transition metal phosphorus trichallcogenide-based membranes as the active layer for proton field-effect transistors. The synthesized Cd0.85PS3Li0.15H0.15 membrane exhibits a well-organized layered structure and high hydrophilicity, with nanometer-sized interlayers containing interconnected water networks. These distinct features facilitate proton conduction, leading to a high proton conductivity value of 0.83 S cm-1 at 98% relative humidity and 90 °C, with an activation energy of 0.26 eV. The Cd0.85PS3Li0.15H0.15-based proton transistor demonstrates tunability via gate voltage, thereby enabling effective modulation of proton flow across source and drain electrodes. The transistor notably showcases superior switching characteristics, with an on/off ratio surpassing 5.51 and a carrier mobility of 8.84 × 10-2 cm2 V-1 s-1. The underlying mechanism for this performance enhancement is attributed to electric-field-induced switching in Cd vacancies. This research boosts the development of highly versatile ionotropic devices by introducing advanced 2D ion-conductive membranes.

3.
Front Immunol ; 15: 1431452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139563

RESUMO

Background: Interactions between the immune and metabolic systems may play a crucial role in the pathogenesis of metabolic syndrome-associated rheumatoid arthritis (MetS-RA). The purpose of this study was to discover candidate biomarkers for the diagnosis of RA patients who also had MetS. Methods: Three RA datasets and one MetS dataset were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms including Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest (RF) were employed to identify hub genes in MetS-RA. Enrichment analysis was used to explore underlying common pathways between MetS and RA. Receiver operating characteristic curves were applied to assess the diagnostic performance of nomogram constructed based on hub genes. Protein-protein interaction, Connectivity Map (CMap) analyses, and molecular docking were utilized to predict the potential small molecule compounds for MetS-RA treatment. qRT-PCR was used to verify the expression of hub genes in fibroblast-like synoviocytes (FLS) of MetS-RA. The effects of small molecule compounds on the function of RA-FLS were evaluated by wound-healing assays and angiogenesis experiments. The CIBERSORT algorithm was used to explore immune cell infiltration in MetS and RA. Results: MetS-RA key genes were mainly enriched in immune cell-related signaling pathways and immune-related processes. Two hub genes (TYK2 and TRAF2) were selected as candidate biomarkers for developing nomogram with ideal diagnostic performance through machine learning and proved to have a high diagnostic value (area under the curve, TYK2, 0.92; TRAF2, 0.90). qRT-PCR results showed that the expression of TYK2 and TRAF2 in MetS-RA-FLS was significantly higher than that in non-MetS-RA-FLS (nMetS-RA-FLS). The combination of CMap analysis and molecular docking predicted camptothecin (CPT) as a potential drug for MetS-RA treatment. In vitro validation, CPT was observed to suppress the cell migration capacity and angiogenesis capacity of MetS-RA-FLS. Immune cell infiltration results revealed immune dysregulation in MetS and RA. Conclusion: Two hub genes were identified in MetS-RA, a nomogram for the diagnosis of RA and MetS was established based on them, and a potential therapeutic small molecule compound for MetS-RA was predicted, which offered a novel research perspective for future serum-based diagnosis and therapeutic intervention of MetS-RA.


Assuntos
Artrite Reumatoide , Biologia Computacional , Aprendizado de Máquina , Síndrome Metabólica , Simulação de Acoplamento Molecular , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/diagnóstico , Artrite Reumatoide/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Redes Reguladoras de Genes , Biomarcadores , Transcriptoma
4.
Front Pharmacol ; 15: 1393526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139634

RESUMO

Background: Refractory gastroesophageal reflux disease (refractory GERD) is a heterogeneous disease characterized by unresponsiveness or poor efficacy to proton-pump inhibitors (PPIs). This chronic disorder substantially weakens patients' mental wellbeing and quality of life, increasing the financial burden on society. Multiple articles have been reported in this area. However, literature involving scientometric analysis of refractory GERD is absent. Therefore, it is necessary to understand the evolution of research themes and the main hotspots of refractory GERD through bibliometric methods. Methods: All documents related to refractory GERD based on the WOS Core Collection from January 2000 to November 2023 were selected for analysis. Citespace V 6.1 R6, VOSviewer V 1.6.20, and Scimago Graphica V 1.0.38 were used to perform bibliometric analysis. Results: We collected a total of 241 research articles from 36 countries and 322 institutions, contributed by over 1,000 authors. Over the last 20 years, the number of articles in this field has increased year by year, and since 2011, the number of publications has increased dramatically, with 85.89% of the papers. These countries are led by the United States and Japan. GUT had the highest number of citations and DIGESTION had the highest number of publications. Research on standardized diagnosis and management, mechanisms, novel monitoring methods, and innovative drugs and procedures for refractory GERD are the main topics and hotspots in this field. This study also found that neuroimmune interaction is closely related to refractory GERD, which may be a new direction for future mechanism research. Conclusion: Our study is the first bibliometric analysis of the global literature on refractory GERD. This research provides valuable insights for researchers, enabling them to quickly understand the research frontier and hot topics of this field.

5.
Water Res ; 264: 122249, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39142045

RESUMO

Although granular floatation has been recognized as a significant issue hindering the application of high-rate anammox biotechnology, limited knowledge is available about its causes and control strategies. This study proposed a novel control strategy by adding folate, and demonstrated its role in the granular floatation alleviation through long-term operation and granular characterizations. It was found that the floatation of anammox granular sludge was obviously relieved with the decreased sludge floatation potential by 67.1% after dosing with folate (8 mg/L) at a high nitrogen loading rate of 12.3 kg-N/(m3·d). Physiochemical analyses showed that the decrease of extracellular polymeric substances (EPS) content (mainly protein), the alleviation of granular surface pore plugging in conjunction with the smooth discharge of generated nitrogen gas were collectively responsible for efficient floatation control. Moreover, metagenomic analysis suggested that the synergistic interactions between anammox bacteria and their symbionts were attenuated after dosing exogenous folate. Anammox bacteria would reduce their synergistic dependence on the symbionts, and decline the supply of metabolites (e.g., amino acids and carbohydrates in EPS) to symbiotic bacteria. The declined EPS excretion contributed to the alleviation of granular floatation by dredging pores blockage, thus leading to a stable system performance. The findings not only offer insights into the role of microbial interaction in granular sludge floatation, but also provide a feasible approach for controlling the floatation issue in anammox granular-based processes.

6.
Lab Chip ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143844

RESUMO

Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, etc., and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids. However, only a few studies have explored controlling bacterial growth and inactivation behaviour using SAWs. In this study, we proposed utilising piezoelectric thin film-based SAW devices on a silicon substrate for controlling bacterial growth and inactivation with and without using ZnO micro/nanostructures. Effects of SAW powers on bacterial growth for two types of bacteria, i.e., E. coli and S. aureus, were evaluated. Varied concentrations of ZnO tetrapods were also added into the bacterial culture to study their effects and the combined antimicrobial effects along with SAW agitation. Our results showed that when the SAW power was below a threshold (e.g., about 2.55 W in this study), the bacterial growth was apparently enhanced, whereas the further increase of SAW power to a high power caused inactivation of bacteria. Combination of thin film SAWs with ZnO tetrapods led to significantly decreased growth or inactivation for both E. coli and S. aureus, revealing their effectiveness for antimicrobial treatment. Mechanisms and effects of SAW interactions with bacterial solutions and ZnO tetrapods have been systematically discussed.

7.
Environ Pollut ; : 124764, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154884

RESUMO

Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.

8.
J Hazard Mater ; 478: 135526, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153300

RESUMO

Phenol and p-cresol are two common toxic small molecules related to various diseases. Existing reports confirmed that high L-tyrosine in the daily diet can increase the concentration of phenolic compounds in blood and urine. L-tyrosine is a common component of protein-rich foods. Some anaerobic bacteria in the gut can convert non-toxic l-tyrosine into these two toxic phenolic compounds, phenol and p-cresol. Existing methods have been constructed for measuring the concentration of phenolic compound in feces. However, there is still a lack of direct visual evidence to measure the phenolic compounds in the intestine. In this study, we aimed to construct a whole-cell biosensor for phenolic compounds detection based on the dmpR, the regulator from the phenol metabolism cluster. The commensal bacterium Citrobacter amalonaticus PS01 was selected and used as the chassis. Compared with the biosensor based on ECN1917, the biosensor PS01[dmpR] could better implant into the mouse gut through gavage and showed a higher sensitive to phenolic compound. And the concentration of phenolic compounds in the intestines could be observed with the help of in vivo imaging system using PS01[dmpR]. This paper demonstrated endogenous phenol synthesis in the gut and the strategy of using commensal bacteria to construct whole-cell biosensors for detecting small molecule compounds in the intestines.

9.
Int Immunopharmacol ; 141: 112891, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153310

RESUMO

In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.

10.
J Transl Med ; 22(1): 768, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143624

RESUMO

BACKGROUND: Postoperative liver metastasis significantly impacts the prognosis of pancreatic neuroendocrine tumor (panNET) patients after R0 resection. Combining computational pathology and deep learning radiomics can enhance the detection of postoperative liver metastasis in panNET patients. METHODS: Clinical data, pathology slides, and radiographic images were collected from 163 panNET patients post-R0 resection at Fudan University Shanghai Cancer Center (FUSCC) and FUSCC Pathology Consultation Center. Digital image analysis and deep learning identified liver metastasis-related features in Ki67-stained whole slide images (WSIs) and enhanced CT scans to create a nomogram. The model's performance was validated in both internal and external test cohorts. RESULTS: Multivariate logistic regression identified nerve infiltration as an independent risk factor for liver metastasis (p < 0.05). The Pathomics score, which was based on a hotspot and the heterogeneous distribution of Ki67 staining, showed improved predictive accuracy for liver metastasis (AUC = 0.799). The deep learning-radiomics (DLR) score achieved an AUC of 0.875. The integrated nomogram, which combines clinical, pathological, and imaging features, demonstrated outstanding performance, with an AUC of 0.985 in the training cohort and 0.961 in the validation cohort. High-risk group had a median recurrence-free survival of 28.5 months compared to 34.7 months for the low-risk group, showing significant correlation with prognosis (p < 0.05). CONCLUSION: A new predictive model that integrates computational pathologic scores and deep learning-radiomics can better predict postoperative liver metastasis in panNET patients, aiding clinicians in developing personalized treatments.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Tumores Neuroendócrinos , Nomogramas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/cirurgia , Tumores Neuroendócrinos/diagnóstico por imagem , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Análise Multivariada , Período Pós-Operatório , Prognóstico , Tomografia Computadorizada por Raios X , Radiômica
11.
Front Nutr ; 11: 1429627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149551

RESUMO

Objective: To explore the reasonable dietary trajectory of elderly people in the community and to test the correlation between different dietary trajectories and body mass index (BMI) of the elderly people in the community to provide a reference for these individuals to formulate scientific interventions and cultivate healthy living habits. Methods: The data of The Chinese Longitudinal Healthy Longevity Survey (CLHLS) from 2011 to 2018 were used to evaluate the dietary status of elderly people in the community according to their diet, and body mass index was calculated according to height and weight. The latent variable growth mixed (LGMM) model was used to analyze the development trajectory of diet in elderly people, and the multivariate logistic regression model was used to test the relationship between different dietary development trajectories and BMI changes as well as to test the correlation between different dietary trajectories and BMI of the elderly people in the community. Results: The LGMM fit four dietary trajectories of elderly individuals: the continuous reasonable diet group (37.81%), the dietary behavior decline group (28.84%), the continuous unreasonable diet group (20.16%), and the dietary behavior improvement group (13.19%). The results showed that factors including male sex, rural setting, being spouseless, nonformal education status, not being wealthy, living alone, and having tooth loss were more likely to be classified as the "persistently unreasonable diet group" (p < 0.05). The logistic regression results showed that the "continuous reasonable diet group" and the "dietary behavior improvement group" were significantly correlated with the development of obesity to a normal BMI. Conclusion: The dietary behavior of the elderly was significantly correlated with BMI value, and improving the reasonable dietary behavior of the elderly could reduce the high BMI to the normal range, but could not restore the low BMI to the normal range, indicating that reasonable dietary behavior is an important measure to prevent and improve overweight or obesity in the elderly. There is significant heterogeneity in the dietary behavior of the elderly, and community medical staff should identify the risk factors of various dietary behaviors of other groups as soon as possible, and provide corresponding intervention strategies to help them change their poor dietary behaviors and improve their nutritional status.

12.
J Bone Miner Res ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151032

RESUMO

Adults with type 1 diabetes (T1D) have increased hip fracture risk, yet no studies have assessed volumetric bone density or structure at the hip in older adults with T1D. Here, we used previously collected 3D CT scans of the proximal femur from older adults with longstanding T1D and non-diabetic controls to identify bone deficits that may contribute to hip fracture in T1D. In this retrospective cohort study, we identified 101 adults with T1D and 181 age-, sex- and race-matched non-diabetic controls (CON) who received abdominal or pelvis CT exams from 2010-2020. Among adults with T1D, 33 (33%) had mild-to-moderate nephropathy, 61 (60%) had neuropathy and 71 (70%) had retinopathy. Within the whole cohort, adults with T1D tended to have lower FN density, though differences did not reach statistical significance. The subset of the T1D group who were diagnosed before age 15 had lower total bone mineral content (-14%, TtBMC), cortical BMC (-19.5%, CtBMC) and smaller Ct cross-sectional area (-12.6, CtCSA) than their matched controls (P<.05 for all). Individuals with T1D who were diagnosed at a later age did not differ from controls in any bone outcome (P>.21). Furthermore, adults with T1D and nephropathy had lower FN aBMD (-10.6%), TtBMC (-17%), CtBMC (-24%) and smaller CtCSA (-15.4%) compared to matched controls (P<.05 for all). Adults with T1D and neuropathy had cortical bone deficits (8.4-12%, P<.04). In summary, among older adults with T1D, those who were diagnosed before age of 15 yrs, those with nephropathy, and those with neuropathy had unfavorable bone outcomes at the FN that may contribute to high hip fracture risk among patients with T1D. These novel observations highlight the longstanding detrimental impact of T1D when present during bone accrual and skeletal fragility as an additional complication of microvascular disease in individuals with T1D.


Older adults with type 1 diabetes (T1D) are at higher risk for hip fractures, but the reasons for this are unclear. In this study, we analyzed existing clinical CT scans of the hip from older adults with longstanding T1D and those without diabetes. While overall bone density differences were not significant, older adults with T1D who were diagnosed before age 15 or had complications like nephropathy or neuropathy showed worse bone outcomes at the femoral neck. These findings suggest that early-onset T1D and related complications contribute to increased hip fracture risk.

13.
Front Chem ; 12: 1425774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114265

RESUMO

Biotoxins are ranges of toxic substances produced by animals, plants, and microorganisms, which could contaminate foods during their production, processing, transportation, or storage, thus leading to foodborne illness, even food terrorism. Therefore, proposing simple, rapid, and effective detection methods for ensuring food free from biotoxin contamination shows a highly realistic demand. Aptamers are single-stranded oligonucleotides obtained from the systematic evolution of ligands by performing exponential enrichment (SELEX). They can specifically bind to wide ranges of targets with high affinity; thus, they have become important recognizing units in safety monitoring in food control and anti-terrorism. In this paper, we reviewed the technical points and difficulties of typical aptamer screening processes for biotoxins. For promoting the understanding of food control in the food supply chain, the latest progresses in rapid optical detection of biotoxins based on aptamers were summarized. In the end, we outlined some challenges and prospects in this field. We hope this paper could stimulate widespread interest in developing advanced sensing systems for ensuring food safety.

14.
Nano Lett ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116042

RESUMO

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) holds great potential to revolutionize ultratrace quantitative analysis. However, achieving quantitative SM-SERS is challenging because of strong intensity fluctuation and blinking characteristics. In this study, we reveal the relation P = 1 - e-α between the statistical SERS probability P and the microscopic average molecule number α in SERS spectra, which lays the physical foundation for a statistical route to implement SM-SERS quantitation. Utilizing SERS probability calibration, we achieve quantitative SERS analysis with batch-to-batch robustness, extremely wide detection range of concentration covering 9 orders of magnitude, and ultralow detection limit far below the single-molecule level. These results indicate the physical feasibility of robust SERS quantitation through statistical route and certainly open a new avenue for implementing SERS as a practical analysis tool in various application scenarios.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39107672

RESUMO

Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices. This study developed a flexible surface acoustic wave (SAW) patch platform to facilitate transdermal delivery of macromolecules with fluorescein isothiocyanates up to 2000 kDa. Two surrogates of human skin were used to evaluate SAW based energized devices, i.e., delivering dextran through agarose gels and across stratum corneum of pig skin into the epidermis. Results showed that the 2000 kDa fluorescent molecules have been delivered up to 1.1 mm in agarose gel, and the fluorescent molecules from 4 to 2000 kDa have been delivered up to 100 µm and 25 µm in porcine skin tissue, respectively. Mechanical agitation, localised streaming, and acousto-thermal effect generated on the skin surface were identified as the main mechanisms for promoting drug transdermal transportation, although micro/nanoscale acoustic cavitation induced by SAWs could also have its contribution. SAW enhanced transdermal drug delivery is dependent on the combined effects of wave frequency and intensity, duration of applied acoustic waves, temperature, and drug molecules molecular weights.

16.
Water Res ; 263: 122175, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39088878

RESUMO

The depletion of nutrient sources in fertilizers demands a paradigm shift in the treatment of nutrient-rich wastewater, such as urine, to enable efficient resource recovery and high-value conversion. This study presented an integrated bipolar membrane electrodialysis (BMED) and hollow fiber membrane (HFM) system for near-complete resource recovery and zero-discharge from urine treatment. Computational simulations and experimental validations demonstrated that a higher voltage (20 V) significantly enhanced energy utilization, while an optimal flow rate of 0.4 L/min effectively mitigated the negative effects of concentration polarization and electro-osmosis on system performance. Within 40 min, the process separated 90.13% of the salts in urine, with an energy consumption of only 8.45 kWh/kgbase. Utilizing a multi-chamber structure for selective separation, the system achieved recovery efficiencies of 89% for nitrogen, 96% for phosphorus, and 95% for potassium from fresh urine, converting them into high-value products such as 85 mM acid, 69.5 mM base, and liquid fertilizer. According to techno-economic analysis, the cost of treating urine using this system at the lab-scale was $6.29/kg of products (including acid, base, and (NH4)2SO4), which was significantly lower than the $20.44/kg cost for the precipitation method to produce struvite. Excluding fixed costs, a net profit of $18.24/m3 was achieved through the recovery of valuable products from urine using this system. The pilot-scale assessment showed that the net benefit amounts to $19.90/m3 of urine, demonstrating significant economic feasibility. This study presents an effective approach for the near-complete resource recovery and zero-discharge treatment of urine, offering a practical solution for sustainable nutrient recycling and wastewater management.

17.
Intensive Crit Care Nurs ; 84: 103744, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089198

RESUMO

OBJECTIVES: To assess the efficacy of early rehabilitation program for VV-ECMO patients and observe the influence on the respiratory and skeletal muscles. DESIGN: A cohort study. SETTING: The study was conducted with VVECMO patients in a comprehensive ICU with 32 beds. MAIN OUTCOME MEASURES: Ultrasound measurements were performed on each patients on day 1, 4, 7, 10, and 14, including diaphragmatic excursion (DE), diaphragmatic thickening fraction (DTF), intercostal muscle thickening fraction (ICMTF), thickness of the rectus femoris (RF), thickness of vastus intermedius (VI), and rectus femoris cross-sectional area (RF-CSA). Data on basic characteristics, results of ultrasound measurements, patients outcomes and adverse events were collected. RESULTS: 22 patients received usual rehabilitation measures were set as the control group and 23 patients underwent early rehabilitation program were set as the study group. There were no differences in diaphragmatic excursion, diaphragmatic thickening fraction, intercostal muscle thickening fraction, thickness of rectus femoris, thickness of vastus intermedius, rectus femoris cross-sectional area between two groups on day 1 after VV-ECMO treatment (P > 0.05). The variation of diaphragmatic thickening fraction and intercostal muscle thickening fraction decreased on the day 7 and 14 after treatment (P < 0.05). The variation of vastus intermedius thickness and rectus femoris cross-sectional area in the study group was less compared with those in the control group on day 4, 7, 10 and 14. The ECMO duration in the study group was shorter than that in the control group (12.00 [10.00-16.25] days vs. 8.00 [6.00-12.25] days, P = 0.002), but there was no difference in the duration of mechanical ventilation. CONCLUSION: Early rehabilitation program can ameliorate muscle atrophy. We recommend implementation of our rehabilitation program in VV-ECMO patients. This program can improve skeletal muscle atrophy and dysfunction in patients with VV-ECMO effectively and perhaps improve quality of life for patients in the future. IMPLICATIONS FOR CLINICAL PRACTICE: Early rehabilitation program put higher demands bedside nurses. It requires them to observe conditions of VVECMO patients closely, assess the feasibility of rehabilitation promptly, and monitor for any adverse reactions. Ultrasound measurement is a noninvasive and useful tool to assess muscle atrophy in ICU patients. Early rehabilitation program can improve skeletal muscle atrophy and dysfunction in patients with VV-ECMO effectively.

18.
Phys Chem Chem Phys ; 26(32): 21668-21676, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087867

RESUMO

Bismuth halogenoxide (BiOX)-based heterojunctions have garnered considerable attention recently due to their potential to enhance photocatalytic performance. However, the predominant focus on II-type heterojunctions has posed challenges in achieving the requisite band edge positions for efficient water splitting. In this investigation, stable van der Waals SbPO4/BiOClxBr1-x heterojunctions were constructed theoretically by using density-functional theory (DFT). Our findings demonstrate that SbPO4 can modulate the formation of Z-scheme heterojunctions with BiOClxBr1-x. The structural properties of BiOX were preserved, while reaching excellent photocatalytic capabilities with high redox capacities. Further investigation unveiled that the band edge positions of the heterojunctions fully satisfy the oxidation-reduction potential of water. Moreover, these heterojunctions exhibit notable absorption efficiency in the visible range, with absorption increasing as x decreases. Our research provides valuable theoretical insights for the experimental synthesis of high-performance BiOX-based photocatalysts for water splitting, leveraging the unique properties of SbPO4. These insights contribute to the advancement of clean energy technology.

19.
Front Immunol ; 15: 1396808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136032

RESUMO

Introduction: Tertiary lymphoid structures (TLSs) are analogues of secondary lymphoid organs that contain various immune cells. The spatial distribution, maturation and composition of TLSs have differential effects on prognosis, and the roles of TLSs in gastric adenocarcinoma (GA) have not been revealed. Methods: Thus, we evaluated the prognostic value of TLSs in GA through analysis of bulk RNA sequencing(RNA-seq) data from public databases and validated our findings in tumour samples from the Fudan University Shanghai Cancer Center (FUSCC) cohort. The spatial distribution,maturation, and composition of TLSs in GA were analysed by reviewing H&E-stained sections and by multiplex immunofluorescence (mIF) staining. Results: We found that TLSs, especially TLSs with germinal centres (GCs) and TLSs located in the invasive margin (IM), were correlated with prolonged overall survival (OS). Second, analysis of public RNA-seq data showed that high dendritic cell (DC) scores were a favourable prognostic factor in GA patients with high scores for both TLSs and GCs. In the FUSCC cohort, DC-LAMP+ DCs weresignificantly enriched in IM-TLSs with GCs, suggesting a potential correlation between the tumour immune activation milieu and the DC abundance. Third, compared to that in TLSs without GCs, the proportion of FOXP3+CD8+ Treg cells was significantly decreased in IM-TLSs with GCs, and the percentage of PD1+CD20+ B cells was significantly increased in TLSs with GCs. Discussion: Our results demonstrate that the spatial arrangement and maturation of TLSs significantly affect prognosis and indicate that TLSs could be a new additional factor for histopathological evaluation.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Estruturas Linfoides Terciárias , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/genética , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Células Dendríticas/imunologia , Idoso , Centro Germinativo/imunologia , Centro Germinativo/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia
20.
Sci Total Environ ; 950: 175225, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098418

RESUMO

The present study was conducted to systematically explore the mechanisms underlying the impact of various surfactants (CTAB, SDBS, Tween 80 and rhamnolipid) at different doses (10, 100 and 1000 mg/kg) on the biodegradation of a model polycyclic aromatic hydrocarbon (PAH) by indigenous soil microorganisms, focusing on bioavailability and community responses. The cationic surfactant CTAB inhibited the biodegradation of phenanthrene within the whole tested dosage range by decreasing its bioavailability and adversely affecting soil microbial communities. Appropriate doses of SDBS (1000 mg/kg), Tween 80 (100, 1000 mg/kg) and rhamnolipid at all amendment levels promoted the transformation of phenanthrene from the very slow desorption fraction (Fvslow) to bioavailable fractions (rapid and slow desorption fractions, Frapid and Fslow), assessed via Tenax extraction. However, only Tween 80 and rhamnolipid at these doses significantly improved both the rates and extents of phenanthrene biodegradation by 22.1-204.3 and 38.4-76.7 %, respectively, while 1000 mg/kg SDBS had little effect on phenanthrene removal. This was because the inhibitory effects of anionic surfactant SDBS, especially at high doses, on the abundance, diversity and activity of soil microbial communities surpassed the bioavailability enhancement in dominating biodegradation. In contrast, the nonionic surfactant Tween 80 and biosurfactant rhamnolipid enhanced the bioavailability of phenanthrene for degradation and also that to specific degrading bacterial genera, which stimulated their growth and increased the abundance of the related nidA degradation gene. Moreover, they promoted the total microbial/bacterial biomass, community diversity and polyphenol oxidase activity by providing available substrates and nutrients. These findings contribute to the design of suitable surfactant types and dosages for mitigating the environmental risk of PAHs and simultaneously benefiting microbial ecology in soil through bioremediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA