Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521770

RESUMO

With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon-matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybrid fiber-optic sensors rely on the resonant electron oscillations of thin metallic films or metallic nanoparticles functionalized on fiber surfaces. Coupled with the new advances in functional nanomaterials as well as fiber structure design and fabrication in recent years, new solutions continue to emerge to further improve the fiber-optic plasmonic sensors' performances in terms of sensitivity, specificity and biocompatibility. For instance, 2D materials like graphene can enhance the surface plasmon intensity at the metallic film surface due to the plasmon-matter interaction. Two-dimensional (2D) morphology of transition metal oxides can be doped with abundant free electrons to facilitate intrinsic plasmonics in visible or near-infrared frequencies, realizing exceptional field confinement and high sensitivity detection of analyte molecules. Gold nanoparticles capped with macrocyclic supramolecules show excellent selectivity to target biomolecules and ultralow limits of detection. Moreover, specially designed microstructured optical fibers are able to achieve high birefringence that can suppress the output inaccuracy induced by polarization crosstalk and meanwhile deliver promising sensitivity. This review aims to reveal and explore the frontiers of such hybrid plasmonic fiber-optic platforms in various sensing applications.

2.
Opt Express ; 26(22): 29148-29158, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470081

RESUMO

In most fiber-optic gas sensing applications where the interested refractive index (RI) is ~1.0, the sensitivities are greatly constrained by the large mismatch between the effective RI of the guided mode and the RI of the surrounding gaseous medium. This fundamental challenge necessitates the development of a promising fiber-optic sensing mechanism with the outstanding RI sensitivity to achieve reliable remote gas sensors. In this work, we report a highly sensitive gas refractometer based on a tapered optical microfiber modal interferometer working at the dispersion turning point (DTP). First, we theoretically analyze the essential conditions to achieve the DTP, the spectral characteristics, and the sensing performance at the DTP. Results show that nonadiabatic tapered optical microfibers with diameters of 1.8-2.4 µm possess the DTPs in the near-infrared range and the RI sensitivities can be improved significantly around the DTPs. Second, we experimentally verify the ultrahigh RI sensitivity around the DTP using a nonadiabatic tapered optical microfiber with a waist diameter of ~2 µm. The experimental observations match well with the simulation results and our proposed gas refractometer provides an exceptional sensitivity as high as -69984.3 ± 2363.3 nm/RIU.

3.
Opt Lett ; 43(4): 679-682, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444051

RESUMO

We report an ultrasensitive gas refractive index (RI) sensor based on optical nanofiber couplers (ONCs). Theoretical analysis reveals that a dispersion turning point (DTP) exists when the diameter of the coupler is below 1000 nm. Leveraging this DTP, the gas RI sensitivity can be significantly improved to infinity. Then we experimentally demonstrate a DTP and achieve ultrahigh sensitivities of 46,470 nm/refractive index unit (RIU) and -45,550 nm/RIU around the DTP using an ONC with a diameter of 700 nm. More importantly, the unique twin dips/peaks interference characteristics around the DTP offers further enhancement on the sensitivity to 92,020 nm/RIU. The demonstrated sensor not only shows vast potential in ultrasensitive pressure sensing, acoustic sensing, gas sensing, and gas phase biomarker detection, but also provides a new tool for nonlinear optics, ultrafast optics, quantum optics, and ultracold atom optics.

4.
Opt Express ; 24(24): 27674-27682, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906336

RESUMO

An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...