Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 57(48): 19584-19593, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976507

RESUMO

The development of urea-free and platinum group metal (PGM)-free catalytic systems for automotive emission control is a challenging task. Herein, we report a new de-NOx system using cyclic feeds of rich and lean gas mixtures with PGM-free catalysts. Initial catalyst screening tests showed that Cu/CeO2 with 5 wt % Cu loading was the most suitable for the water-gas shift reaction (WGS, CO + H2O → CO2 + H2), followed by the selective NH3 synthesis by the NO + H2 reaction. The unsteady-state system under alternating feeds of rich (0.1% NO + 0.5% CO + 1% H2O) and lean (0.1% NO + 2% O2 + 1% H2O) gas mixtures over a mixture of Cu/CeO2 and Cr-exchanged mordenite (CrMOR) showed higher NOx conversion than the steady-state (0.1% NO + 0.35% CO + 0.6% O2 + 1% H2O) reaction between 200 and 500 °C. The de-NOx mechanism under periodical rich/lean conditions was studied by operando infrared (IR) experiments. In the rich period, the WGS reaction on the Cu/CeO2 catalyst yield H2, which reduces NO to NH3 on the Cu/CeO2 catalyst. NH3 is then captured by the Brønsted acid sites of CrMOR. In the subsequent lean period, the adsorbed NH3 acts as a reductant for the selective catalytic reduction of NOx catalyzed by the Cr sites of CrMOR. This study demonstrates a new urea-free and PGM-free catalytic system that can provide an alternative de-NOx technology for automotive catalysis under periodic rich/lean conditions.


Assuntos
Amônia , Água , Oxirredução , Gases , Catálise
3.
Environ Sci Technol ; 57(43): 16289-16295, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37861445

RESUMO

This study reports a comprehensive investigation into the active sites and reaction mechanism for the selective catalytic reduction of NO by NH3 (NH3-SCR) over phosphate-loaded ceria (P/CeO2). Catalyst characterization and density functional theory calculations reveal that H3PO4 and H2P2O6 species are the dominant phosphate species on the P/CeO2 catalysts under the experimental conditions. The reduction/oxidation half-cycles (RHC/OHC) were investigated using in situ X-ray absorption near-edge structure for Ce L3-edge, ultraviolet-visible, and infrared (IR) spectroscopies together with online analysis of outlet products (operando spectroscopy). The Ce4+(OH-) species, possibly adjacent to the phosphate species, are reduced by NO + NH3 to produce N2, H2O, and Ce3+ species (RHC). The Ce3+ species is reoxidized by aqueous O2 (OHC). The results from IR spectroscopy suggest that the RHC initiates with the reaction between NO and Ce4+(OH-) to yield Ce3+ and gaseous HONO, which then react with NH3 to produce N2 and H2O via NH4NO2 intermediates.


Assuntos
Amônia , Água , Amônia/química , Oxirredução , Água/química , Espectrofotometria Infravermelho , Catálise , Fosfatos
4.
J Colloid Interface Sci ; 636: 230-244, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634393

RESUMO

In this work, two donor-acceptor linear conjugated polymers were designed and synthesized based on thianthrene-5,5,10,10-tetraoxide (TTO) as the acceptor unit, benzo[1,2-b:4,5-b']dithiophene derivative (Py1) and thiophene (Py2) as the donor units, respectively. The Py1/Py2 composite was prepared by physical ball milling of the two polymers in a mixture, which was further treated with a N-methyl-2-pyrrolidone (NMP)-assisted sonication treatment, and the obtained catalyst was named N-Py1/Py2. Compared with the single polymer or Py1/Py2, the FTIR characteristic peaks of O=S=O have a red shift for N-Py1/Py2, accompanied by a profound change in morphology. Furthermore, N-Py1/Py2 has a broader light response and more efficient separation and transport of charge carriers, and as a result it exhibits a higher photocatalytic hydrogen evolution rate (26.5 mmol g-1 h-1) without the involvement of any co-catalyst than Py1/Py2 catalyst (3.56 mmol g-1 h-1). The underlying mechanism for the enhanced photocatalytic activity by the sonication treatment in NMP is discussed based both on experimental and theoretical calculation data.

5.
Angew Chem Int Ed Engl ; 60(24): 13388-13393, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33817923

RESUMO

Dual-atom site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom site catalysts (SACs), like 100 % atomic utilization efficiency and excellent selectivity. Herein, a supported Pd2 DAC was synthesized and used for electrochemical CO2 reduction reaction (CO2 RR) for the first time. The as-obtained Pd2 DAC exhibited superior CO2 RR catalytic performance with 98.2 % CO faradic efficiency at -0.85 V vs. RHE, far exceeding that of Pd1 SAC, and coupled with long-term stability. The density functional theory (DFT) calculations revealed that the intrinsic reason for the superior activity of Pd2 DAC toward CO2 RR was the electron transfer between Pd atoms at the dimeric Pd sites. Thus, Pd2 DAC possessed moderate adsorption strength of CO*, which was beneficial for CO production in CO2 RR.

6.
Angew Chem Int Ed Engl ; 60(11): 6170-6176, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33274797

RESUMO

We report an Ag1 single-atom catalyst (Ag1 /MnO2 ), which was synthesized from thermal transformation of Ag nanoparticles (NPs) and surface reconstruction of MnO2 . The evolution process of Ag NPs to single atoms is firstly revealed by various techniques, including in situ ETEM, in situ XRD and DFT calculations. The temperature-induced surface reconstruction process from the MnO2 (211) to (310) lattice plane is critical to firmly confine the existing surface of Ag single atoms; that is, the thermal treatment and surface reconstruction of MnO2 is the driving force for the formation of single Ag atoms. The as-obtained Ag1 /MnO2 achieved 95.7 % Faradic efficiency at -0.85 V vs. RHE, and coupled with long-term stability for electrochemical CO2 reduction reaction (CO2 RR). DFT calculations indicated single Ag sites possessed high electronic density close to Fermi Level and could act exclusively as the active sites in the CO2 RR. As a result, the Ag1 /MnO2 catalyst demonstrated remarkable performance for the CO2 RR, far surpassing the conventional Ag nanosized catalyst (AgNP /MnO2 ) and other reported Ag-based catalysts.

7.
Chem Commun (Camb) ; 56(56): 7687-7697, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32558846

RESUMO

Single atomic site catalysts (SASCs) have attracted great attention in heterogenous catalysis due to their maximized atomic utilization and unique electronic structure. This feature article summarizes the recent contributions of the authors in the synthesis, characterization, and applications of SASCs. Firstly, we disclose the tricks of our recent progress in the synthesis of SASCs, including impregnation of metal precursors on defect-rich supports, pyrolysis of polymer-encapsulated metals and isolation of contiguous atoms by alloying. Then, we show several key characterization technologies to identify the geometric and electronic structure of SASCs, and reveal the advantages and disadvantages of these characterization technologies. Finally, the applications of the SASCs in heterogenous catalysis are presented, which are classified into electrocatalysis and thermocatalysis, and the structure-function relationships are disclosed.

8.
ACS Appl Mater Interfaces ; 12(23): 25903-25909, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423194

RESUMO

A series of 2-3 nm Pt-Sn bimetallic nanoparticles with different Pt-Sn coordination numbers were synthesized by a stepwise approach including electrostatic adsorption and temperature-programmed reduction of metal precursors on the SiO2 support. In situ synchrotron X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) demonstrated a highly ordered hexagonal Pt1Sn1 intermetallic shell on Pt nanoparticles. The turnover rates (TORs), propylene selectivity, and stability of these bimetallic catalysts significantly surpass those of the monometallic Pt catalyst for propane dehydrogenation. At the same time, TORs increase with increasing the Pt-Sn coordination number, whereas propylene selectivity is not significantly influenced by the Pt-Sn coordination number. Combined with experiments and theoretical calculations, the high propylene selectivity of Pt-Sn bimetallic nanoparticles is attributed to the geometric effects of Sn that reduce the Pt ensembles, and the high TORs are due to the electronic effects that weaken Pt-hydrocarbon chemisorption energies.

9.
ACS Appl Mater Interfaces ; 12(9): 10350-10358, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024361

RESUMO

In this article, moisture-treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts were synthesized and applied in automotive three-way catalytic (TWC) reactions. Compared to the Pd/CeO2/Al2O3 catalyst, the Pd@CeO2/Al2O3 core-shell catalyst had better TWC activities. Transmission electron microscopy (TEM) images and X-ray photoelectron spectra (XPS) showed excess PdO2 on the Pd and CeO2 interface of Pd@CeO2 nanoparticles. Fourier transform infrared (FT-IR) spectra analysis demonstrated the generation of the hydroperoxyl (*OOH) groups on the surface of the Pd@CeO2 nanoparticle. CO-diffuse reflectance Fourier transform (DRIFT) measurement suggested that the CO adsorbed on *OOH species contributed to the formation of CO2 and intermediate *COOH. NO-DRIFT results showed that more *NO2 species appeared on the moisture-treated Pd@CeO2 nanoparticle, which was the main active site in the automobile TWC reaction. These were the main factors contributing to the moisture-treated Pd@CeO2/Al2O3 catalyst's high catalytic activities. The collected data revealed the crucial role of the co-promoting effect of moisture and core-shell interface on TWC reactions over the Pd@CeO2/Al2O3 catalyst, which could be applied to other catalytic reactions.

10.
Chem Commun (Camb) ; 54(12): 1477-1480, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29359218

RESUMO

In this paper, we present an approach for the precisely controlled phase transformation of MnO2 in order to synthesise different compositions of α-/ß-MnO2 materials, by adding a trace amount of Zn(acac)2 as the phase transformation-inducing agent in a hydrothermal reaction. The single-atomic dispersion of Zn might reduce the barrier of phase transformation of δ-MnO2 to ß-MnO2. The ratio of the Zn species present in the single-atomic dispersions and nanoclusters might dominate the generation of α-MnO2 and ß-MnO2. The results of the oxygen reduction reactions indicate that the MnO2 materials have potential applications as promising catalysts in electrochemical catalysis.

11.
Macromol Rapid Commun ; 36(3): 311-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487677

RESUMO

A series of CB[6]-based macroinitiators with "n" bromo-initiation sites on the "equator" of CB[6] is developed for the synthesis of CB[6]-star poly(N-isopropylacrylamide) (CB[6]-star PNIPAM) by atom transfer radical polymerization. By taking advantage of the exceptional binding affinity of the CB[6] core, CB[6]-star PNIPAM is used as a host macromolecule to construct large compound vesicles in the presence of protonated n-butylamine at pH 5.63. The deprotonated n-butylamine is detached from the CB[6] core at pH 11.1, which destructs the vesicular structures. For CB[6]-star PNIPAM, the thermoresponsive properties can be adjusted by simply changing the formation and destruction of the inclusion complexes of the CB[6] core with n-butylamine. These results suggest that the prepared CB[6]-star PNIPAM shows pH and temperature responsiveness, which has great potential for the design of a dual response smart material.


Assuntos
Resinas Acrílicas/química , Polímeros/química , Polimerização , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...