Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ergonomics ; : 1-13, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150052

RESUMO

Few studies investigate the impact of anterior-posterior excitation frequency on the time-domain vibrational response and injury risk of the lumbar spine in seated individuals. Firstly, this study utilised a previously developed finite element model of an upright seated human body on a rigid chair without a backrest to investigate the modes that affect the anterior-posterior vibrations of the seated body. Subsequently, transient dynamic analysis was employed to calculate the lumbar spine's time-domain responses (displacement, stress, and pressure) and risk factors under anteroposterior sinusoidal excitation at varying frequencies (1-8 Hz). Modal analysis suggested the frequencies significantly affecting the lumbar spine's vibration were notably at 4.7 Hz and 5.5 Hz. The transient analysis results and risk factor assessment indicated that the lumbar responses were most pronounced at 5 Hz. In addition, risk factor assessment showed that long-term exposure to 8 Hz vibration was associated with a greater risk of lumbar injury.


Although the anterior-posterior resonance frequency of the sitting body is around 1 Hz, the anterior-posterior vibrations approaching 5 Hz and at 8 Hz inflict more significant harm upon the lumbar spine than other frequencies, thereby elevating the risk of lumbar injury and back disorders.

3.
Mol Cell Biochem ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228982

RESUMO

Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.

4.
Mater Today Bio ; 24: 100928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179432

RESUMO

Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.

5.
J Mater Chem B ; 12(2): 508-524, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108579

RESUMO

Poly(lactide-co-glycolide) (PLGA) and calcium sulfate composites are promising biodegradable biomaterials but are still challenging to use in people with high levels of blood glucose or diabetes. To date, the influence of glucose on their degradation has not yet been elucidated and thus calls for more research attention. Herein, a novel calcium sulfate whisker with L-arginine was used to effectively tune its crystal morphology and was employed as a reinforced phase to construct the PLGA-based composite scaffolds (ArgCSH/PLGA) with a sleeve porous structure. ArgCSH/PLGA showed excellent elastic modulus and strength in the compression and bending models. Moreover, an in vitro immersion test showed that ArgCSH/PLGA possessed degradation and redeposition behaviors sensitive to glucose concentration, and the adsorbed Arg played a crucial role in the degradation process. The subsequent cell functional evaluation showed that ArgCSH could effectively protect cells from damage caused by AGEs and promote osteogenic differentiation. The corresponding degradation products of ArgCSH/PLGA displayed the ability to regulate osteoblast bone differentiation and accelerate matrix mineralization. These findings provide new insights into the interaction between biomaterials and the physiological environment, which may be useful in expanding the targeted choice of efficient bone graft biodegradable materials for diabetic osteoporosis.


Assuntos
Osteogênese , Poliglactina 910 , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliglactina 910/química , Sulfato de Cálcio , Ácido Poliglicólico/química , Ácido Láctico/química , Arginina/farmacologia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
6.
Front Bioeng Biotechnol ; 11: 1310017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268940

RESUMO

Introduction: An ideal bone repair scaffold should have dual functions of osteoinductive ability and in vivo imaging. In this study, the simultaneous substitution of silicon (Si) and gadolinium (Gd) in hydroxyapatite (HA) as potential multifunctional bone graft materials has been successfully developed. Methods: A series of HA nanoparticles (HA NPs) doped with different proportions of Si and Gd were prepared. The chemical structure and phase composition of the materials were analyzed using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The microstructure, magnetic properties, surface potential, and cytotoxicity of the materials were also analyzed. The magnetic resonance imaging (MRI) effect of Gd&Si-HA/poly(lactic-co-glycolic acid) (Gd&Si-HA/PLGA) composite materials was evaluated. Osteogenic-related gene expression, alkaline phosphatase (ALP) level, and mineralization capacity of MC3T3-E1 cultured on Gd&Si-HA/PLGA composite materials were also detected. Results and Discussion: The 1.5Gd&Si-HA@PLGA group showed good ability to promote osteogenic differentiation of cells. The MRI effect of the 1.5Gd&Si-HA@PLGA scaffold was observable. This HA material containing Si and Gd co-doping has a broad application prospect in the field of bone tissue engineering owing to its ability to enhance osteoinductive property and improve MRI effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA