Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(12): 11596-11606, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008099

RESUMO

The assembly of various azo dyes and pigments with inorganic layered materials could develop new types of intercalation materials. The electronic structures and photothermal properties of composite materials (AbS--LDH) constituted by azobenzene sulfonate anions (AbS-) and Mg-Al layered double hydroxide (LDH) lamella were theoretically studied at the M06-2X/def2-TZVP//M06-2X/6-31G(d,p) level using density functional theory and time-dependent density functional theory. Meanwhile, the influences of LDH lamella on the AbS- in AbS--LDH materials were investigated. The calculated results showed that the addition of LDH lamella could lower the isomerization energy barrier of CAbS- anions (CAbS- stands for cis AbS-). The thermal isomerization mechanisms of AbS--LDH and AbS were related to the conformational change of the azo group, out-of-plane rotation and in-plane inversion. The LDH lamella could reduce the energy gap of the n → π* and π → π* electronic transition and lead to a red-shift in the absorption spectra. When a polar solvent DMSO was applied, the excitation energy of the AbS--LDHs was increased, making its photostability stronger than in nonpolar solvent and solvent-free.

2.
J Org Chem ; 87(19): 12997-13010, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36166363

RESUMO

The mechanism and regioselectivity of the heterocyclic C-H arylation of benzofuran and benzothiophene catalyzed by Pd(OAc)2 complexes were investigated using the density functional theory (DFT) method. The Pd(0)L2(PhI) complex (L = HOAc) is proposed to be the catalytic species. Compared to the traditional Heck-type mechanism, concerted metalation-deprotonation (CMD) mechanism, and electrophilic aromatic substitution (SEAr) mechanism for the C-H arylation, a new hydride relay exchange mechanism was proposed for the benzoheterocyclic C-H arylation catalyzed by Pd complexes, which consists of two redox processes between Pd(II) and Pd(0) species to complete the regioselective C-H activation. The calculated results indicate that the reaction along the hydride relay exchange mechanism is more favorable than those along other mechanisms, including the traditional Heck-type mechanism and the base-assisted anti-H elimination mechanism. This agrees well with the experimental results. Meanwhile, the origin for the regioselective C-H arylation was unveiled in which the α-C-H arylation products are major for the heterocyclic C-H arylation of benzofuran, but the ß-C-H arylation products are major for that of benzothiophene. This study might provide a deep mechanistic understanding on the regioselective C-H activation and arylation of benzoheterocycle compounds catalyzed by transition-metal complexes.

3.
J Phys Chem A ; 122(39): 7842-7851, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30188712

RESUMO

The mechanism of histidine-catalyzed asymmetrical aldol reaction of acetone with benzaldehyde was studied by using B3LYP method of density functional theory at the levels of 6-31G(d,p) and cc-pvdz basis sets. The calculation results showed that the reaction mechanism included four steps: (I) nucleophilic attack of histidine on acetone to form alcohol intermediate Inter-A through the transition state TS1 (considered a rate control step because the activation energy (49.95 kcal/mol) was relatively high); (II) dehydration of the alcohol intermediate to form the cis- or trans-enamine through the transition states TS3 and TS4 with the energy barriers of 36.12 and 38.15 kcal/mol; (III) electrophilic addition of cis-enamine or trans-enamine with benzaldehyde to form imine Inter-C or Inter-E through the transition states TS8, TS9, TS10, and TS11 (energy barriers 18.43, 22.34, 13.24, and 13.24 kcal/mol, respectively); (IV) after combination of the imine intermediate with water through the transition states TS12, TS13, TS14, and TS15 (energy barriers 22.79, 34.6, 28.2, 25.12 kcal/mol, respectively), removal of the histidine catalys to obtain the final S or R aldol product. Through analyzing the potential energy profile of reaction, we found that the histidine-catalyzed reaction of acetone with benzaldehyde was more energetically favorable to obtain the R-product (ee value >99%). Solvent effects computed with a polarizable continuum model (PCM) indicated that the DMSO and water can reduce the reaction energy barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA