Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672500

RESUMO

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Assuntos
Materiais Biocompatíveis , Neuroma , Traumatismos dos Nervos Periféricos , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Neuroma/terapia , Traumatismos dos Nervos Periféricos/terapia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Animais , Regeneração Nervosa , Alicerces Teciduais/química
2.
Biomacromolecules ; 25(4): 2243-2260, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38523444

RESUMO

Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Cartilagem , Polissacarídeos , Alicerces Teciduais
3.
Bioresour Technol ; 394: 130277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176596

RESUMO

Traditional Chinese medicine residue (TCMR) was utilized as an inexpensive carbon source for the production of poly(3-hydroxybutyrate) (PHB) using the newly isolated Bacillus altitudinis HBU-SI7. The results showed that Yu Ping Feng TCMR could be directly hydrolysed by cellulase to obtain a high proportion of glucose (99 % of total sugar) without pretreatment, achieving an enzymatic hydrolysis rate of up to 89.2 %. B. altitudinis could grow and produce PHB when using enzymatically hydrolysed TCMR in a 5-L fermenter. After 20 h of fermentation, the maximum concentration of PHB was 11.2 g/L, and the highest cell dry weight (CDW) was 15.4 g/L, with 72.7 % of the PHB fraction in CDW. Moreover, this strain could utilize enzymatic hydrolysates from various herbal formulas to produce high levels of PHB. This novel approach aims to accumulate PHB from TCMR hydrolysates, offering an effective and environmentally friendly method to reduce production costs and achieve mass production.


Assuntos
Bacillus , Poli-Hidroxialcanoatos , Hidroxibutiratos/química , Medicina Tradicional Chinesa , Bacillus/metabolismo , Fermentação , Poliésteres/metabolismo
4.
Adv Mater ; 36(8): e2310164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925614

RESUMO

Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Hidrogéis/química , Aderências Teciduais , Resistência à Tração , Interações Hidrofóbicas e Hidrofílicas , Adesivos
5.
Biomed Pharmacother ; 170: 116024, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113623

RESUMO

Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Preparações Farmacêuticas , Nervos Periféricos/fisiologia , Sistemas de Liberação de Medicamentos , Substâncias Macromoleculares , Regeneração Nervosa , Nervo Isquiático
6.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762437

RESUMO

Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.

7.
Int J Biol Macromol ; 253(Pt 6): 126793, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709238

RESUMO

The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.


Assuntos
Quitosana , Traumatismos dos Nervos Periféricos , Procedimentos Cirúrgicos sem Sutura , Humanos , Traumatismos dos Nervos Periféricos/cirurgia , Adesivos , Inflamação , Regeneração Nervosa , Nervos Periféricos/cirurgia
8.
Int J Bioprint ; 9(5): 770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608847

RESUMO

The micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography. We loaded the MTC with neurotrophin-3 (NT-3) to promote the regeneration of sensory and sympathetic neurons in the peripheral nervous system. We found that the MTC@NT3 composite nerve conduit mimicked the microenvironment of peripheral nerves and promoted axonal regeneration while inducing the targeted growth of Schwann cells, which would promote functional recovery in rats with peripheral nerve injury. Artificial nerve implants with functional properties can be developed using the strategy presented in this study.

9.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629137

RESUMO

Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.


Assuntos
Quitosana , Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Quitosana/uso terapêutico , Tratamento Conservador , Biopolímeros/uso terapêutico , Proliferação de Células
10.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37283026

RESUMO

Proper microtubule dynamics are critical for neuronal morphogenesis and functions, and their dysregulation results in neurological disorders and regeneration failure. Superior cervical ganglion-10 (SCG10, also known as stathmin-2 or STMN2) is a well-known regulator of microtubule dynamics in neurons, but its functions in the peripheral nervous system remain largely unknown. Here, we show that Scg10 knockout mice exhibit severely progressive motor and sensory dysfunctions with significant sciatic nerve myelination deficits and neuromuscular degeneration. Additionally, increased microtubule stability, shown by a significant increase in tubulin acetylation and decrease in tubulin tyrosination, and decreased axonal transport were observed in Scg10 knockout dorsal root ganglion (DRG) neurons. Furthermore, SCG10 depletion impaired axon regeneration in both injured mouse sciatic nerve and cultured DRG neurons following replating, and the impaired axon regeneration was found to be induced by a lack of SCG10-mediated microtubule dynamics in the neurons. Thus, our results highlight the importance of SCG10 in peripheral axon maintenance and regeneration.


Assuntos
Axônios , Tubulina (Proteína) , Animais , Camundongos , Axônios/fisiologia , Gânglios Espinais , Regeneração Nervosa/genética , Neurônios , Estatmina/genética
11.
Adv Mater ; 35(32): e2212015, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37205796

RESUMO

Trauma often results in peripheral nerve injuries (PNIs). These injuries are particularly challenging therapeutically because of variable nerve diameters, slow axonal regeneration, infection of severed ends, fragility of the nerve tissue, and the intricacy of surgical intervention. Surgical suturing is likely to cause additional damage to peripheral nerves. Therefore, an ideal nerve scaffold should possess good biocompatibility, diameter adaptability, and a stable biological interface for seamless biointegration with tissues. Inspired by the curl of Mimosa pudica, this study aimed to design and develop a diameter-adaptable, suture-free, stimulated curling bioadhesive tape (SCT) hydrogel for repairing PNI. The hydrogel is fabricated from chitosan and acrylic acid-N-hydroxysuccinimide lipid via gradient crosslinking using glutaraldehyde. It closely matches the nerves of different individuals and regions, thereby providing a bionic scaffold for axonal regeneration. In addition, this hydrogel rapidly absorbs tissue fluid from the nerve surface achieving durable wet-interface adhesion. Furthermore, the chitosan-based SCT hydrogel loaded with insulin-like growth factor-I effectively promotes peripheral nerve regeneration with excellent bioactivity. This procedure for peripheral nerve injury repair using the SCT hydrogel is simple and reduces the difficulty and duration of surgery, thereby advancing adaptive biointerfaces and reliable materials for nerve repair.


Assuntos
Quitosana , Traumatismos dos Nervos Periféricos , Ratos , Animais , Humanos , Alicerces Teciduais , Ratos Sprague-Dawley , Nervos Periféricos/fisiologia , Nervos Periféricos/cirurgia , Traumatismos dos Nervos Periféricos/terapia , Hidrogéis , Regeneração Nervosa , Nervo Isquiático/lesões
12.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176994

RESUMO

Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.

14.
Front Neurol ; 14: 1086806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873443

RESUMO

Generally, axons located at the central end of the nerve system will sprout after injury. Once these sprouts cannot reach the distal end of the severed nerve, they will form a traumatic neuroma. Traumatic neuromas bring a series of complex symptoms to patients, such as neuropathic pain, skin abnormalities, skeletal abnormalities, hearing loss, and visceral damage. To date, the most promising and practical clinical treatments are drug induction and surgery, but both have their limitations. Therefore, it will be the mainstream trend to explore new methods to prevent and treat traumatic neuroma by regulating and remodeling the microenvironment of nerve injury. This work first summarized the pathogenesis of traumatic neuroma. Additionally, the standard methods of prevention and treatment on traumatic neuroma were analyzed. We focused on three essential parts of advanced functional biomaterial therapy, stem cell therapy, and human-computer interface therapy to provide the availability and value of preventing and treating a traumatic neuroma. Finally, the revolutionary development of the prevention and treatment on traumatic neuroma has been prospected. How to transform the existing advanced functional materials, stem cells, and artificial intelligence robots into clinical practical technical means as soon as possible for high-quality nerve repair and prevention of neuroma was further discussed.

15.
Front Surg ; 10: 1044941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936660

RESUMO

Background: Trochanteric fractures usually require surgical treatment. The currently used classification system, such as AO classification, cannot cover all variant types, and is poor in reliability, causing confusion in surgical decision making. This study describes a simple, well-covered, re-liable, accurate, and clinically useful classification. Methods: We retrospectively reviewed the records of 907 patients with trochanteric fractures treated by us from 1,999 to 2019 and proposed a new classification according to radiographs. Then, 50 records randomly selected in proportion were examined by 10 observers (5 experienced and 5 inexperienced) independently according to AO and the new classification. After a 2-week interval, repeat evaluation was completed. The Kappa coefficient was used to investigate the intra-observer reliability, inter-observer reliability and the agreement between the observers and the "reference standard". Results: The new classification system includes 12 types composed of 3 medial groups and 4 lateral groups. According to the medial buttress, the fractures are divided into group I (intact lesser trochanter, adequate but-tress), group II (incomplete lesser trochanter, effective cortical buttress after reduction) and group III (huge defect of the medial cortex). According to the penetration region of the lateral fracture line, the fractures are divided into group A (intact lateral cortex), group B (incomplete lateral cortex), group C (subtrochanteric fractures) and group D (multiple lateral fracture lines). All of the included cases can be classified according to the new classification, of which 34 (3.75%) cases are unclassifiable by the AO classification. Intra-observer: The experienced achieved substantial agreement using both AO [k = 0.61 (95% confidence interval 0.46-0.76)] and new classification [k = 0.65 (0.55-0.76)]. The inexperienced reached moderate agreement using both AO [k = 0.48 (0.33-0.62)] and new classification [k = 0.60 (0.50-0.71)]. Inter-observer: The overall reliabilities for AO [k = 0.51 (0.49-0.53)] and for new classification [k = 0.57 (0.55-0.58)] were both moderate. The agreement between the experienced and the reference standard according to AO [k = 0.61 (0.49-0.74)] and new classification [k = 0.63 (0.54-0.72)] were both substantial. The agreement between the inexperienced and the reference standard according to AO [k = 0.48 (0.45-0.50)] and the new classification [k = 0.48 (0.41-0.54)] were both moderate. Conclusion: Compared with AO classification, our new classification is better in coverage, reliability and accuracy, and has the feasibility of clinical verification and promotion.

16.
Histol Histopathol ; 38(9): 975-987, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36734334

RESUMO

Macrophage influences peripheral nerve regeneration. According to the classical M1/M2 paradigm, the M1 macrophage is an inhibitor of regeneration, while the M2 macrophage is a promoter. However, several studies have shown that M1 macrophages are indispensable for peripheral nerve repair and facilitate many critical processes in axonal regeneration. In this review, we summarized the information on macrophage polarization and focused on the activities of M1 macrophages in regeneration. We also provided some examples where the macrophage phenotypes were regulated to help regeneration. We argued that the coordination of both macrophage phenotypes might be effective in peripheral nerve repair, and a more comprehensive view of macrophages might contribute to macrophage-based immunomodulatory therapies.


Assuntos
Macrófagos , Nervos Periféricos , Regeneração Nervosa/fisiologia , Fenótipo , Ativação de Macrófagos
17.
Front Surg ; 9: 919886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061065

RESUMO

Introduction: Postoperative delirium is a common complication of patients undergoing hip fracture surgery or arthroplasty and is related to decreased survival time and physical function. In this study, we aim to build and validate a prediction score of postoperative delirium in geriatric patients undergoing hip fracture surgery or hip arthroplasty. Methods: A retrospective cohort of geriatric patients undergoing hip fracture surgery or hip arthroplasty was established. Variables of included patients were collected as candidate predictors of postoperative delirium. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression were used to derive a predictive score for postoperative delirium. The accuracy of the score was evaluated by the area under the curve (AUC) of the receiver operating curve (ROC). We used bootstrapping resamples for model calibration. The prediction score was validated in an extra cohort. Results: There were 1,312 patients in the derivation cohort, and the incidence of postoperative delirium was 14.33%. Of 40 variables, 9 were identified as predictors, including preoperative delirium, cerebrovascular accident (CVA) with the modified Rankin scale, diabetes with a random glucose level, Charlson comorbidity index (CCI), age, application of benzodiazepines in surgery, surgical delay ≥2 days, creatine ≥90 µmol/L, and active smoker. The prediction score achieved a mean AUC of 0.848 in the derivation cohort. In the validation cohort, the mean AUC was 0.833. The prediction model was well-calibrated in the two cohorts. Conclusion: Based on retrospective data, a prediction score for postoperative delirium in geriatric patients undergoing hip fracture surgery or hip arthroplasty was derived and validated. The performance of the scoring system outperformed the models from previous studies. Although the generalization ability of the score needs to be tested in similar populations, the scoring system will enable delirium risk stratification for hip fracture patients and facilitate the development of strategies for delirium prevention.

18.
ACS Appl Bio Mater ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980356

RESUMO

Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.

19.
Acta Biomater ; 149: 126-138, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840105

RESUMO

There are many problems and challenges related to the treatment of highly prevalent oral mucosal diseases and oral drug delivery because of a large amount of saliva present in the oral cavity, the accompanying oral movements, and unconscious swallowing in the mouth. Therefore, an ideal oral dressing should possess stable adhesion and superior tough strength in the oral cavity. However, this fundamental requirement greatly limits the use of synthetic adhesive dressings for oral dressings. Here, we developed a mussel-inspired Janus gelatin-polydopamine-nano-clay (GPC) hydrogel with controlled adhesion and toughness through the synergistic physical and chemical interaction of gelatin (Gel), nano-clay, and dopamine (DA). The hydrogel not only exhibits strong wet adhesion force (63 kPa) but also has high toughness (1026 ± 100 J m-3). Interfacial adhesion of hydrogels is achieved by modulating the interaction of catechol groups of the hydrogel with specific functional groups (e.g., NH2, SH, OH, and COOH) on the tissue surface. The matrix dissipation of the hydrogel is regulated by physical crosslinking of gelatin, chemical crosslinking of gelatin with polydopamine (Michael addition and Schiff base formation), and nano-clay-induced constraint of the molecular chain. In addition, the GPC hydrogel shows high cell affinity and favors cell adhesion and proliferation. The hydrogel's instant and strong mucoadhesive properties provide a long-lasting therapeutic effect of the drug, thereby enhancing the healing of oral ulcers. Therefore, mussel-inspired wet-adhesion Janus GPC hydrogels can be used as a platform for mucosal dressing and drug delivery systems. STATEMENT OF SIGNIFICANCE: It is a great challenge to treat oral mucosal diseases due to the large amount of saliva present in the oral cavity, the accompanying oral movements, unconscious swallowing, and flushing of drugs in the mouth. To overcome the significant limitations of clinical bioadhesives, such as weakness, toxicity, and poor usage, in the present study, we developed a simple method through the synergistic effects of gelatin, polydopamine, and nano-clay to prepare an optimal mucosal dressing (Janus GPC) that integrates Janus, adhesion, toughness, and drug release property. It fits effectively in the mouth, resists saliva flushing and oral movements, provides oral drug delivery, and reduces patient discomfort. The Janus GPC adhesive hydrogels have great commercial potential to support further the development of innovative therapies for oral mucosal diseases.


Assuntos
Gelatina , Hidrogéis , Adesivos/química , Adesivos/farmacologia , Bandagens , Argila , Gelatina/química , Gelatina/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Indóis , Polímeros
20.
Neural Regen Res ; 17(12): 2600-2605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662188

RESUMO

Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury. However, outcomes have been disappointing. Electroencephalography (EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury, which maintains target muscle activity and promotes the neurological rehabilitation effect. This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury. Nerve transfer may result in loss of nerve function in the donor area, so only nerves with minimal impact on the donor area, such as the C7 nerve, should be selected as the donor. Single tendon transfer does not fully restore optimal joint function, so multiple functions often need to be reestablished simultaneously. Compared with traditional manual rehabilitation, EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling, which facilitates neurological recovery. In the early stages of brachial plexus injury treatment, the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain's computational capabilities and actively controlling functional exercise with the aid of external machinery. It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness. Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer. Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling. Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...