Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.567
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727396

RESUMO

A series of quaternary ammonium or phosphonium salts were applied as zeolite growth modifiers in the synthesis of hierarchical ZSM-5 zeolite. The results showed that the use of methyltriphenylphosphonium bromide (MTBBP) could yield nano-sized hierarchical ZSM-5 zeolite with a "rice crust" morphology feature, which demonstrates a better catalytic performance than other disinfect candidates. It was confirmed that the addition of MTBBP did not cause discernable adverse effects on the microstructures or acidities of ZSM-5, but it led to the creation of abundant meso- to marco- pores as a result of aligned tiny particle aggregations. Moreover, the generation of the special morphology was believed to be a result of the coordination and competition between MTBBP and Na+ cations. The as-synthesized hierarchical zeolite was loaded with Zn and utilized in the propane aromatization reaction, which displayed a prolonged lifetime (1430 min vs. 290 min compared with conventional ZSM-5) and an enhanced total turnover number that is four folds of the traditional one, owing to the attenuated hydride transfer reaction and slow coking rate. This work provides a new method to alter the morphological properties of zeolites with low-cost disinfectants, which is of great potential for industrial applications.

2.
Br J Radiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730541

RESUMO

PURPOSE: To develop an artificial intelligence (AI) tool with automated pancreas segmentation and measurement of pancreatic morphological information on CT images to assist improved and faster diagnosis in acute pancreatitis. METHODS: This study retrospectively contained 1124 patients suspected for AP and received non-contrast and enhanced abdominal CT examination between September 2013 to September 2022. Patients were divided into training (N = 688), validation (N = 145), testing dataset (N = 291, N = 104 for normal pancreas, N = 98 for AP, N = 89 for AP complicated with PDAC (AP&PDAC)). A model based on convolutional neural network (MSAnet) was developed. The pancreas segmentation and measurement were performed via eight open-source models and MSAnet based tools, and the efficacy was evaluated using Dice similarity coefficient (DSC) and Intersection over union (IoU). The DSC and IoU for patients with different ages were also compared. The outline of tumor and edema in the AP and were segmented by clustering. The diagnostic efficacy for radiologists with or without the assistance of MSAnet tool in AP and AP&PDAC was evaluated using receiver operation curve and confusion matrix. RESULTS: Among all models, MSAnet based tool showed best performance on the training and validation dataset, and had high efficacy on testing dataset. The performance was age-affected. With assistance of the AI tool, the diagnosis time was significantly shortened by 26.8% and 32.7% for junior and senior radiologists, respectively. The area under curve in diagnosis of AP was improved from 0.91 to 0.96 for junior radiologist and 0.98 to 0.99 for senior radiologist. In AP&PDAC diagnosis, AUC was increased from 0.85 to 0.92 for junior and 0.97 to 0.99 for senior. CONCLUSION: MSAnet based tools showed good pancreas segmentation and measurement performance, which help radiologists improve diagnosis efficacy and workflow in both AP and AP with PDAC conditions. ADVANCES IN KNOWLEDGE: This study developed an AI tool with automated pancreas segmentation and measurement and provided evidence for AI tool assistance in improving the workflow and accuracy of AP diagnosis.

3.
Schizophr Res ; 269: 48-55, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729085

RESUMO

BACKGROUND: The effect of cognitive function on suicidal tendency in patients with schizophrenia is still inconclusive. This study aimed to explore the effect of cognitive impairment on suicidal tendency in schizophrenia patients and the risk factors of suicidal tendency in schizophrenia patients with cognitive impairment. METHODS: A total of 988 subjects were recruited for this study and finally 517 patients were included in the statistical analysis. Sociodemographic information was collected for each subject. Mini-Mental State Examination (MMSE) was used to assess patients' cognitive functioning. In addition, the Positive and Negative Syndrome Scale (PANSS) positive subscale, Insomnia Severity Index (ISI), and Beck Scale for Suicide Ideation (BSI) were used to assess psychotic symptoms, severity of insomnia, and intensity of suicidal ideation, respectively. RESULTS: Schizophrenia patients with cognitive dysfunction were significantly less likely to develop suicidal tendencies than those without cognitive dysfunction (P < 0.05, OR = 0.58, 95%CI: 0.39-0.81). In patients with cognitive impairment, those with suicidal tendency had substantially higher scores on BSI, ISI, EC, PD, IRI, F1, and PANSS positive subscale, and took more types of antipsychotic drugs than those without suicidal tendency (all P < 0.05), and the results of binary logistic regression analysis showed that, PANSS positive subscale score (B = 0.06, p = 0.04, OR = 1.07, 95%CI: 1.00-1.13) was a risk factor for suicidal tendencies. CONCLUSIONS: Our findings suggest that schizophrenia patients with cognitive dysfunction are significantly less likely to develop suicidal tendencies. Moreover, positive symptom is a risk factor for suicidal tendencies in schizophrenia patients with cognitive dysfunction.

4.
Virus Res ; : 199392, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729218

RESUMO

SARS-CoV-2 evolves constantly with various novel mutations. Due to their enhanced infectivity, transmissibility and immune evasion, a comprehensive understanding of the association between these mutations and the respective functional changes is crucial. However, previous mutation studies of major SARS-CoV-2 variants remain limited. Here, we performed systematic analyses of full-length amino acids mutation, phylogenetic features, protein physicochemical properties, molecular dynamics and immune escape as well as pseudotype virus infection assays among thirteen major SARS-CoV-2 variants. We found that Omicron exhibited the most abundant and complex mutation sites, higher indices of hydrophobicity and flexibility than other variants. The results of molecular dynamics simulation suggest that omicron has the highest number of hydrogen bonds and strongest binding free energy between the S protein and ACE2 receptor. Furthermore, we revealed 10 immune escape sites in 13 major variants, some of them were reported previously, but four of which (i.e 339/373/477/496) are first reported to be specific to Omicron, whereas 462 is specific to Epslion. The infectivity of these variants was confirmed by the pseudotype virus infection assays. Our findings may help us understand the functional consequences of the mutations within various variants and the underlying mechanisms of the immune escapes conferred by the S proteins.

5.
Eur J Med Chem ; 272: 116466, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704938

RESUMO

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.

7.
Chemistry ; : e202401826, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747420

RESUMO

Reaction of a rare and well-characterized MnIII-superoxo species, Mn(BDPBrP)(O2•) (1, H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine), with 4-dimethylaminophenol at -80 °C proceeds via concerted proton electron transfer (CPET) to produce a MnIII-hydroperoxo complex, Mn(BDPBrP)(OOH) (2), alongside 4-dimethylaminophenoxy radical; whereas, upon treatment with 4-nitrophenol, complex 1 undergoes a proton transfer process to afford a MnIV-hydroperoxo complex, [Mn(BDPBrP)(OOH)]+ (3). Intriguingly, the reactions of 1 with 4-chlorophenol and 4-methoxyphenol follow two routes of CPET and sequential proton and electron transfer to furnish complex 2 in the end. UV-vis and EPR spectroscopic studies coupled with DFT calculations provided support for this wide mechanistic spectrum of activating various phenol O-H bonds by a single MnIII-superoxo complex, 1.

8.
Minerva Urol Nephrol ; 76(2): 241-246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38742557

RESUMO

BACKGROUND: To evaluate the feasibility and safety of dual-console telesurgery with the new KangDuo system in an animal experiment and clinical study. METHODS: Six canine models were performed radical prostatectomy with dual-console KanDuo surgical robot-1500 (KD-SR-1500-RARP). The perioperative outcomes, physical and mental workload of the surgeon were collected. Physical workload was evaluated with surface electromyography. Mental workload was evaluated with NASA-TLX. After conducting animal experiments to verify safety of dual-console KD-SR-1500-RARP, we conducted the clinical trial using 5G and wired networks. RESULTS: In the animal experiment, all surgeries were performed successfully. The operative time was 80.2±32.1 min. The docking time was 2.4±0.5 min. The console time was 49.7±25.3 min. There were no perioperative complications or equipment related adverse events. All dogs can micturate after catheter removal at one week postoperatively. The mental workload was at a low level (a scale ranging from 0 to 60), which scored 15.7±6.9. Among the eight recorded muscles, the fatigue degree of the right radial flexor and left biceps was the highest two (iEMG, resection, 299.8±344 uV, 109.9±16.9 uV; suture, 849.4±1252.5 uV, 423.1±621.3 uV, respectively). In the clinical study, the console time was 136 min. The mean latency time was ≤200 ms. The data pocket loss was <1%. The operation was successfully completed without malfunctions occurring throughout the entire process. CONCLUSIONS: Dual-console telesurgery with the KD-SR-1500 system was shown to be feasible and safe in radical prostatectomy using 5G and wired networks.


Assuntos
Estudos de Viabilidade , Prostatectomia , Procedimentos Cirúrgicos Robóticos , Animais , Cães , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Masculino , Prostatectomia/métodos , Prostatectomia/efeitos adversos , Humanos , Pessoa de Meia-Idade , Desenho de Equipamento , Duração da Cirurgia , Idoso , Eletromiografia , Telemedicina/métodos
9.
Environ Sci Technol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742946

RESUMO

Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.

10.
Acta Biomater ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704115

RESUMO

Host defense peptide-mimicking cationic oncolytic polymers have attracted increasing attention for cancer treatment in recent years. However, polymers with large amounts of positive charge may cause rapid clearance and severe off-target toxicity. To facilitate in vivo application, an alkaline phosphatase (ALP)-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been reported in this work. C12-PLL/PA could be hydrolyzed into the active form of the oncolytic polypeptide (C12-PLL) by the extracellular alkaline phosphatase within solid tumors, thereby resulting in the conversion of the negative charge to positive charge and restoring its membrane-lytic activity. Detailed mechanistic studies showed that C12-PLL/PA could effectively destroy cancer cell membranes and subsequently result in rapid necrosis of cancer cells. More importantly, C12-PLL/PA significantly inhibited the tumor growth in the 4T1 orthotopic breast tumor model with negligible side effects. In summary, these findings demonstrated that the shielding of the amino groups with phosphate groups represents a secure and effective strategy to develop cationic oncolytic polypeptide, which represents a valuable reference for the design of enzyme-activated oncolytic polymers. STATEMENT OF SIGNIFICANCE: Recently, there has been a growing interest in fabricating host defense peptide-mimicking cationic oncolytic polymers for cancer therapy. However, there remain concerns about the tumor selectivity and off-target toxicity of these cationic polymers. In this study, an alkaline phosphatase-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been developed to selectively target cancer cells while sparing normal cells. Mechanistic investigations demonstrated that C12-PLL/PA effectively disrupted cancer cell membranes, leading to rapid necrosis. Both in vitro and in vivo experiments showed promising anticancer activity and reliable safety of C12-PLL/PA. The findings suggest that this synthetic enzyme-responsive polypeptide holds potential as a tumor-specific oncolytic polymer, paving the way for future applications in cancer therapy.

11.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739169

RESUMO

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , DNA Metiltransferase 3A , Epigênese Genética , L-Lactato Desidrogenase , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , DNA Metiltransferase 3A/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Prognóstico
12.
Nanoscale ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720648

RESUMO

Lithium-oxygen batteries (LOBs) with extraordinarily high energy density are some of the most captivating energy storage devices. Designing an efficient catalyst system that can minimize the energy barriers and address the oxidant intermediate and side-product issues is the major challenge regarding LOBs. Herein, we have developed a new type of integrated cathode of Cu foam-supported hierarchical nanowires decorated with highly catalytic Au nanoparticles which achieves a good combination of a gas diffusion electrode and a catalyst electrode, contributing to the synchronous multiphase transport of ions, oxygen, and electrons as well as improving the cathode reaction kinetics effectively. Benefiting from such a unique hierarchical architecture, the integrated cathode delivered superior electrochemical performance, including a high discharge capacity of up to 11.5 mA h cm-2 and a small overpotential of 0.49 V at 0.1 mA cm-2, a favorable energy efficiency of 84.3% and exceptional cycling stability with nearly 1200 h at 0.1 mA cm-2 under a fixed capacity of 0.25 mA h cm-2. Furthermore, density functional theory (DFT) calculations further reveal the intrinsic direct catalytic ability to form/decompose Li2O2 during the ORR/OER process. As a consequence, this work provides an insightful investigation on the structural engineering of catalysts and holds great potential for advanced integrated cathode design for LOBs.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38713156

RESUMO

BACKGROUND: The objective of this study was to identify the risk of cardiovascular disease (CVD)-related death in older patients with major hematological malignancies (HM). METHODS: This study included 103,102 older patients diagnosed with 7 major types of HM between 1975 and 2018 (median follow-up: 2.7 years) from the Surveillance, Epidemiology, and End Result (SEER) database. The proportion of deaths, Fine-Gray sub-distribution hazards regression model, standardized mortality ratios (SMR) and absolute excess risk (AER) were used to evaluate the risk of CVD-related death. RESULTS: For older patients with HM, CVD-related death ranked as the second leading cause of death, surpassed only by primary malignancy. Compared to the general older population, older patients with HM had higher SMR and AER of CVD-related deaths (SMR: 1.16-1.81; AER: 41.24-308.99), heart disease-related deaths (SMR: 1.19-1.90; AER: 39.23-274.69), and cerebrovascular dis-ease-related deaths (SMR: 0.99-1.66; AER: -0.35 -24.15). The proportion of deaths and cumulative mortality increased with the passage of survival time, especially in Hodgkin lymphoma patients with stage I/II and those aged ≥85 years with chronic lymphocytic leukemia, surpassing primary malignancy. The risk of CVD-related death varied among different HM types. CONCLUSIONS: For older patients with HM, long-term cardiovascular risk management needs to be focused on while addressing the primary malignancy. IMPACT: Our results emphasize the need to manage long-term cardiovascular risk in older patients with HM, especially in those identified as high-risk cases.

14.
J Mater Chem B ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716837

RESUMO

Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.

15.
Heliyon ; 10(8): e30086, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699746

RESUMO

Background: Heart failure (HF) and idiopathic pulmonary fibrosis (IPF) are global public health concerns. The relationship between HF and IPF is widely acknowledged. However, the interaction mechanisms between these two diseases remain unclear, and early diagnosis is particularly difficult. Through the integration of bioinformatics and machine learning, our work aims to investigate common gene features, putative molecular causes, and prospective diagnostic indicators of IPF and HF. Methods: The Gene Expression Omnibus (GEO) database provided the RNA-seq datasets for HF and IPF. Utilizing a weighted gene co-expression network analysis (WGCNA), possible genes linked to HF and IPF were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were then employed to analyze the genes that were shared by HF and IPF. Using the cytoHubba and iRegulon algorithms, a competitive endogenous RNA (ceRNA) network was built based on seven basic diagnostic indicators. Additionally, hub genes were identified using machine learning approaches. External datasets were used to validate the findings. Lastly, the association between the number of immune cells in tissues and the discovered genes was estimated using the CIBERSORT method. Results: In total, 63 shared genes were identified between HF- and IPF-related modules using WGCNA. Extracellular matrix (ECM)/structure organization, ECM-receptor interactions, focal, and protein digestion and absorption, were shown to be the most enrichment categories in GO and KEGG enrichment analysis of common genes. Furthermore, a total of seven fundamental genes, including COL1A1, COL3A1, THBS2, CCND1, ASPN, FAP, and S100A12, were recognized as pivotal genes implicated in the shared pathophysiological pathways of HF and IPF, and TCF12 may be the most important regulatory transcription factor. Two characteristic molecules, CCND1 and NAP1L3, were selected as potential diagnostic markers for HF and IPF, respectively, using a support vector machine-recursive feature elimination (SVM-RFE) model. Furthermore, the development of diseases and diagnostic markers may be associated with immune cells at varying degrees. Conclusions: This study demonstrated that ECM/structure organisation, ECM-receptor interaction, focal adhesion, and protein digestion and absorption, are common pathogeneses of IPF and HF. Additionally, CCND1 and NAP1L3 were identified as potential diagnostic biomarkers for both HF and IPF. The results of our study contribute to the comprehension of the co-pathogenesis of HF and IPF at the genetic level and offer potential biological indicators for the early detection of both conditions.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38703317

RESUMO

Manganese-based (Mn-based) nanomaterials (NMs) have great potential as alternatives to conventional Mn fertilizers. Yet, its environmental risks and effects on plant growth are not completely well understood. This study investigated the physiological effects of manganese dioxide (MnO2) and manganese tetroxide (Mn3O4) NMs on inter-root exposure (0-500 mg/L) of hydroponically grown rice. The results showed that on inter-root exposure, 50 mg/L Mn-based NMs promoted the uptake of mineral elements and enhanced the enzymatic activities of antioxidant systems (CAT and SOD) in rice, whereas 500 mg/L Mn3O4 NMs disrupted the mineral element homeostasis and led to phytotoxicity. The promotion effect of MnO2 NMs was better, firstly because MnO2 NMs treatment had lower Mn content in the plant than Mn3O4 NMs. In addition, MnO2 NMs are more transported and absorbed in the plant in ionic form, while Mn3O4 NMs exist in granular form. MnO2 NMs and Mn3O4 NMs both can be used as nano-fertilizers to improve the growth of rice by inter-root application, but the doses should be carefully selected.

17.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703527

RESUMO

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.

18.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698276

RESUMO

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Assuntos
Aegilops , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Perfilação da Expressão Gênica , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Aegilops/genética , Aegilops/microbiologia , Melhoramento Vegetal , Transcriptoma , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Puccinia/fisiologia , Regulação da Expressão Gênica de Plantas
20.
Front Microbiol ; 15: 1357261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694796

RESUMO

Background: Emerging evidence demonstrates that the gastrointestinal microbiome has the potential to be a biomarker in neoadjuvant chemoradiotherapy for colorectal cancer (CRC). Yet studies on the impact of the gastric microbiome (GM) on the response to neoadjuvant chemotherapy (NACT) are still scarce. Methods: Forty-eight patients with gastric cancer participated in this retrospective study, and 16S rRNA sequencing was performed to evaluate formalin-fixed and paraffin-embedded (FFPE) tissue biospecimens and fresh-frozen tissues. Results: In this study, 16 bacterial taxa at different levels, including Bacillus, Anaerococcus, and Chloroflexi, were identified to be enriched before NACT in response (R) patients in group FFPE. In contrast, 6 bacterial taxa, such as Haemophilus, Veillonellaceae (Veillonella), etc. were enriched after NACT, in which we reported for the first time that the phylum Chloroflexi was enriched before NACT in R patients. Thirty-one bacterial taxa of Coriobacteriaceae, Ruminococcaceae, Veillonellaceae, and Lachnospiraceae were identified in group mucosa as being enriched in R patients. In comparison, 4 bacterial taxa dominated by the phylum Proteobacteria were enriched in NR patients. Notably, the family Veillonellaceae was found in both tissue samples, and the metabolic pathways, including the citrate cycle (TCA cycle) and various amino acids, including alanine, were found to be potentially predictive in both sample species. Conclusion: There are differences in the features of the GM for different NACT response results. The causal relationship deserves to be confirmed by further investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...