Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 342-350, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686416

RESUMO

Temporal interference (TI) as a new neuromodulation technique can be applied to non-invasive deep brain stimulation. In order to verify its effectiveness in the regulation of motor behavior in animals, this paper uses the TI method to focus the envelope electric field to the ventral posterior lateral nucleus (VPL) of the thalamus in the deep brain of mouse to regulate left- and right-turning motor behavior. The focusability of TI in the mouse VPL was analyzed by finite element method, and the focus area and volume were obtained by numerical calculation. A stimulator was used to generate TI current to stimulate the mouse VPL to verify the effectiveness of the TI stimulation method, and the accuracy of the focus location was further determined by c-Fos immunofluorescence experiments. The results showed that the electric field generated by TI stimulation was able to focus on the VPL nuclei when the stimulation current reached 800 µA; the mouse were able to make corresponding left and right turns according to the stimulation position; and the c-Fos positive cell markers in the VPL nuclei increased significantly after stimulation. This study confirms the feasibility of TI in regulating animal motor behavior and provides a non-invasive stimulation method for brain tissue for animal robots.


Assuntos
Estimulação Encefálica Profunda , Atividade Motora , Proteínas Proto-Oncogênicas c-fos , Animais , Camundongos , Estimulação Encefálica Profunda/métodos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Animal , Núcleos Ventrais do Tálamo/fisiologia , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA