Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 141-150, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593649

RESUMO

The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 µM·h-1·cm-2 equal to the total electron transfer rate of 541 µM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.

2.
ACS Nano ; 11(2): 2275-2283, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28195696

RESUMO

The development of highly efficient bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for improving the efficiency of the Zn-air battery. Herein, we report porous NiO/CoN interface nanowire arrays (PINWs) with both oxygen vacancies and a strongly interconnected nanointerface between NiO and CoN domains for promoting the electrocatalytic performance and stability for OER and ORR. Extended X-ray absorption fine structure spectroscopy, electron spin resonance, and high-resolution transmission electron microscopy investigations demonstrate that the decrease of the coordination number for cobalt, the enhanced oxygen vacancies on the NiO/CoN nanointerface, and strongly coupled nanointerface between NiO and CoN domains are responsible for the good bifunctional electrocatalytic performance of NiO/CoN PINWs. The primary Zn-air batteries, using NiO/CoN PINWs as an air-cathode, display an open-circuit potential of 1.46 V, a high power density of 79.6 mW cm-2, and an energy density of 945 Wh kg-1. The three-series solid batteries fabricated by NiO/CoN PINWs can support a timer to work for more than 12 h. This work demonstrates the importance of interface coupling and oxygen vacancies in the development of high-performance Zn-air batteries.

3.
ACS Appl Mater Interfaces ; 5(10): 4026-30, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23642212

RESUMO

A robust prototypical anti-icing coating with a self-lubricating liquid water layer (SLWL) is fabricated via grafting cross-linked hygroscopic polymers inside the micropores of silicon wafer surfaces. The ice adhesion on the surface with SLWL is 1 order of magnitude lower than that on the superhydrophobic surfaces and the ice formed atop of it can be blown off by an action of strong breeze. The surface with self-lubricating liquid water layer exhibits excellent capability of self-healing and abrasion resistance. The SLWL surface should also find applications in antifogging and self-cleaning by rainfall, in addition to anti-icing and antifrosting.

4.
Chem Commun (Camb) ; 49(40): 4516-8, 2013 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23575638

RESUMO

A spontaneous and controllable removal of condensed microdroplets at high supersaturation via self-propelled jumping is achieved by introducing a designed micropore array on a nanostructured superhydrophobic surface. The fabricated surface was demonstrated to delay the ice formation for 1 hour at -15 °C with a supersaturation of 6.97.


Assuntos
Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
6.
Chem Commun (Camb) ; (10): 1199-201, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18309416

RESUMO

Surfaces obtained by modifying poly(N,N'-dimethylaminoethyl methacrylate) (PDMAEMA) on rough silicon substrates are highly hydrophilic at low pH and highly hydrophobic at high pH; such surfaces effectively supplement the research on the wettability of solid surfaces based on the pH-responsive polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...