Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(34)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37224795

RESUMO

Atomically thin narrow-bandgap layered PdSe2has attracted much attention due to its rich and unique electrical properties. For silicon-compatible device integration, direct wafer-scale preparation of high-quality PdSe2thin film on a silicon substrate is highly desired. Here, we present the low-temperature synthesis of large-area polycrystalline PdSe2films grown on SiO2/Si substrates by plasma-assisted metal selenization and investigate their charge carrier transport behaviors. Raman analysis, depth-dependent x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy were used to reveal the selenization process. The results indicate a structural evolution from initial Pd to intermediate PdSe2-xphase and eventually to PdSe2. The field-effect transistors fabricated from these ultrathin PdSe2films exhibit strong thickness-dependent transport behaviors. For thinner films (4.5 nm), a record high on/off ratio of 104was obtained. While for thick ones (11 nm), the maximum hole mobility is about 0.93 cm2V-1S-1, which is the record high value ever reported for polycrystalline films. These findings suggest that our low-temperature-metal-selenized PdSe2films have high quality and show great potential for applications in electrical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA