Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 6: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239264

RESUMO

BACKGROUND: Euchromatic histone-lysine N-methyltransferase 2 (G9a/Ehmt2) is the main enzyme responsible for the apposition of H3K9 di-methylation on histones. Due to its dual role as an epigenetic regulator and in the regulation of non-histone proteins through direct methylation, G9a has been implicated in a number of biological processes relevant to cell fate control. Recent reports employing in vitro cell lines indicate that Ehmt2 methylates MyoD to repress its transcriptional activity and therefore its ability to induce differentiation of activated myogenic cells. METHODS: To further investigate the importance of G9a in modulating myogenic regeneration in vivo, we crossed Ehmt2 (floxed) mice to animals expressing Cre recombinase from the Myod locus, resulting in efficient knockout in the entire skeletal muscle lineage (Ehmt2 (ΔmyoD) ). RESULTS: Surprisingly, despite a dramatic drop in the global levels of H3K9me2, knockout animals did not show any developmental phenotype in muscle size and appearance. Consistent with this finding, purified Ehmt2 (ΔmyoD) satellite cells had rates of activation and proliferation similar to wild-type controls. When induced to differentiate in vitro, Ehmt2 knockout cells differentiated with kinetics similar to those of control cells and demonstrated normal capacity to form myotubes. After acute muscle injury, knockout mice regenerated as efficiently as wildtype. To exclude possible compensatory mechanisms elicited by the loss of G9a during development, we restricted the knockout within adult satellite cells by crossing Ehmt2 (floxed) mice to Pax7 (CreERT2) and also found normal muscle regeneration capacity. CONCLUSIONS: Thus, Ehmt2 and H3K9me2 do not play significant roles in skeletal muscle development and regeneration in vivo.


Assuntos
Histona-Lisina N-Metiltransferase/deficiência , Desenvolvimento Muscular , Músculo Esquelético/enzimologia , Doenças Musculares/enzimologia , Regeneração , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Venenos Elapídicos , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Cinética , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Fenótipo , Células Satélites de Músculo Esquelético/enzimologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais
2.
Nat Med ; 21(7): 786-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26053624

RESUMO

Depending on the inflammatory milieu, injury can result either in a tissue's complete regeneration or in its degeneration and fibrosis, the latter of which could potentially lead to permanent organ failure. Yet how inflammatory cells regulate matrix-producing cells involved in the reparative process is unknown. Here we show that in acutely damaged skeletal muscle, sequential interactions between multipotent mesenchymal progenitors and infiltrating inflammatory cells determine the outcome of the reparative process. We found that infiltrating inflammatory macrophages, through their expression of tumor necrosis factor (TNF), directly induce apoptosis of fibro/adipogenic progenitors (FAPs). In states of chronic damage, however, such as those in mdx mice, macrophages express high levels of transforming growth factor ß1 (TGF-ß1), which prevents the apoptosis of FAPs and induces their differentiation into matrix-producing cells. Treatment with nilotinib, a kinase inhibitor with proposed anti-fibrotic activity, can block the effect of TGF-ß1 and reduce muscle fibrosis in mdx mice. Our findings reveal an unexpected anti-fibrotic role of TNF and suggest that disruption of the precisely timed progression from a TNF-rich to a TGF-ß-rich environment favors fibrotic degeneration of the muscle during chronic injury.


Assuntos
Adipogenia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Músculo Esquelético/lesões , Doenças Musculares/tratamento farmacológico , Pirimidinas/uso terapêutico , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Crônica , Colágeno/metabolismo , Venenos Elapídicos , Feminino , Fibrose , Citometria de Fluxo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Monócitos/citologia , Monócitos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/deficiência , Receptores CCR2/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
3.
FEBS J ; 280(17): 4100-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23763717

RESUMO

Although the regenerative potential of adult skeletal muscle is maintained by satellite cells, other stem/progenitor cell populations also reside in skeletal muscle. These heterogeneous cellular pools with mesenchymal lineage potentially play important roles in tissue homeostasis, with reciprocal collaborations between these cells and satellite cells appearing critical for effective regeneration. However, in disease settings, these mesenchymal stem/progenitors adopt a more sinister role - likely providing a major source of fibrosis, fatty tissue and extracellular matrix protein deposition in dystrophic tissue. Development of therapies for muscle degeneration therefore requires complete understanding of the multiple cell types involved and their complex interactions.


Assuntos
Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Animais , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/fisiologia , Células Satélites de Músculo Esquelético/fisiologia
4.
Fibrogenesis Tissue Repair ; 5(1): 20, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23270300

RESUMO

Adult stem cells are activated to proliferate and differentiate during normal tissue homeostasis as well as in disease states and injury. This activation is a vital component in the restoration of function to damaged tissue via either complete or partial regeneration. When regeneration does not fully occur, reparative processes involving an overproduction of stromal components ensure the continuity of tissue at the expense of its normal structure and function, resulting in a "reparative disorder". Adult stem cells from multiple organs have been identified as being involved in this process and their role in tissue repair is being investigated. Evidence for the participation of mesenchymal stromal cells (MSCs) in the tissue repair process across multiple tissues is overwhelming and their role in reparative disorders is clearly demonstrated, as is the involvement of a number of specific signaling pathways. Transforming growth factor beta, bone morphogenic protein and Wnt pathways interact to form a complex signaling network that is critical in regulating the fate choices of both stromal and tissue-specific resident stem cells (TSCs), determining whether functional regeneration or the formation of scar tissue follows an injury. A growing understanding of both TSCs, MSCs and the complex cascade of signals regulating both cell populations have, therefore, emerged as potential therapeutic targets to treat reparative disorders. This review focuses on recent advances on the role of these cells in skeletal muscle, heart and lung tissues.

5.
Int J Biol Sci ; 8(2): 171-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22211115

RESUMO

The intestinal messenger RNA expression signature is affected by the presence and composition of the endogenous microbiota, with effects on host physiology. The intestine is also characterized by a distinctive micronome. However, it is not known if microbes also impact intestinal gene expression epigenetically. We investigated if the murine caecal microRNA expression signature depends on the presence of the microbiota, and the potential implications of this interaction on intestinal barrier function. Three hundred and thirty four microRNAs were detectable in the caecum of germ-free and conventional male mice and 16 were differentially expressed, with samples from the two groups clustering separately based on their expression patterns. Through a combination of computational and gene expression analyses, including the use of our curated list of 527 genes involved in intestinal barrier regulation, 2,755 putative targets of modulated microRNAs were identified, including 34 intestinal barrier-related genes encoding for junctional and mucus layer proteins and involved in immune regulation. This study shows that the endogenous microbiota influences the caecal microRNA expression signature, suggesting that microRNA modulation is another mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis. Through microRNAs, the gut microbiota may impinge a much larger number of genes than expected, particularly in diseases where its composition is altered. In this perspective, abnormally expressed microRNAs could be considered as novel therapeutic targets.


Assuntos
Intestinos/microbiologia , MicroRNAs/metabolismo , Animais , Ceco/microbiologia , Regulação da Expressão Gênica , Vida Livre de Germes/genética , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Masculino , Camundongos , MicroRNAs/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo
6.
Curr Top Dev Biol ; 96: 139-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21621070

RESUMO

Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury. Additionally, recent studies have highlighted the role of tissue resident mesenchymal cell populations as playing a central role in regulating regeneration. These "accessory" cell populations are proposed to influence myogenesis via direct cell contact and secretion of paracrine trophic factors. The basic foundations of accessory cell understanding should be recognized as a crucial component to all prospects of regenerative medicine, and this chapter intends to provide a comprehensive background on the current literature describing immune and tissue-resident mesenchymal cells' role in skeletal muscle regeneration.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Envelhecimento , Animais , Humanos , Desenvolvimento Muscular , Células-Tronco/citologia , Células-Tronco/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA