Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PhytoKeys ; 235: 21-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020471

RESUMO

A new lithophytic species, Paraboeazunyiensis T.Deng, F.Wen & R.B.Zhang (Gesneriaceae), inhabiting Karst rocks in northern Guizhou, China, is introduced and depicted in this study. It bears a resemblance to P.crassifolia (Hemsl.) B.L. Burtt, yet is distinguishable by its shorter filaments and staminodes, triangular ovate calyx segments, and ovaries surpassing the styles in length. Moreover, the phylogenetic tree constructed from nuclear DNA (ITS) and plastid DNA (trnL-F) data firmly support the differentiation of this novel species from P.crassifolia.

2.
Tissue Cell ; 85: 102220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776784

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) is the candidate for the treatment of cartilage defects because of their directional induction potential and natural anti-inflammatory properties. As one of the non-canonical receptors of Notch1, Delta Like Non-Canonical Notch Ligand 2 (DLK2) involves in stem cells' adipogenesis and chondrogenic differentiation. However, the specific regulatory mechanism of DLK2 in the chondrogenic differentiation of BMSCs is still unclear. In this study, we found that the expression of DLK2 was reduced and the expression of Col2a1, Col10a1, Acan, Sox9, and Notch1 was raised in the process of BMSCs chondrogenic differentiation. However, the expression of Col2a1, Col10a1, Acan, and Sox9 reduced significantly, and the signal factor Notch1 and the chondrogenic differentiation capacity of BMSCs turned down in the DLK2 overexpression group. Furthermore, the expression of Col2a1, Col10a1, Acan, and Sox9 significantly enhanced, Notch1 expression was also increased, and the chondrogenic differentiation capacity of BMSCs turned up in the DLK2 suppression group. Concurrently, the proliferation of BMSCs was weakened after overexpression of DLK2, and there was no significant change in cell migration. However, the proliferation and migration of BMSCs were significantly enhanced after the inhibition of DLK2 expression. Therefore, these results suggest that DLK2 negatively regulates chondrogenic differentiation and cell proliferation in BMSCs by inhibiting the Notch1 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Transdução de Sinais , Ligantes , Células Cultivadas , Transdução de Sinais/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Condrogênese/genética , Células da Medula Óssea
3.
Heliyon ; 9(6): e17312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441407

RESUMO

Background: Intra-articular inflammation and cartilage degradation are the major pathological characteristics of osteoarthritis (OA). Mounting studies have revealed that circular RNAs (circRNAs) act as an important regulatory role in inflammatory diseases and are frequently dys-expressed in OA cartilage tissues. Objective: Here, a dys-regulated cicrRNA (has_circ_0017636, termed circSFMBT2-OA) was identified, and its role in regulating lipopolysaccharide (LPS)-induced chondrocyte injury was next investigated. Methods: CHON-001 chondrocytes were treated with LPS, and then the levels of circSFMBT2-OA, cartilage-related genes, and pro-inflammatory cytokines were measured using quantitative real-time PCR (qRT-PCR) and Western blot analysis. CHON-001 cell viability, proliferation, and apoptosis were assayed using Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EDU), and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, respectively. Results: CircSFMBT2-OA level was significantly down-regulated in OA cartilage tissues and LPS-treated CHON-001 cells. Functionally, circSFMBT2-OA overexpression accelerated cell proliferation, and suppressed cell apoptosis, pro-inflammatory cytokines production, matrix-degrading enzymes expression, and ECM degradation in CHON-001 cells. Inversely, circSFMBT2-OA depletion decreased cell viability and increased matrix-degrading enzymes expression and ECM degradation. Mechanistically, circSFMBT2-OA inhibited LPS-induced NF-κB/NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome activation in CHON-001 cells. Consequently, NLRP3 activator reversed the effect of circSFMBT2-OA on repressing LPS-induced CHON-001 cell injury. Conclusion: These data reveal a vital effect of a novel circSFMBT2-OA on repressing OA progression and provide a promising target to treat OA.

4.
PhytoKeys ; 225: 41-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213816

RESUMO

Petrocodonwui F.Wen & R.B.Zhang (Gesneriaceae), a typically lithophyte occurring in the Danxia areas of north-western Guizhou, China, is described and illustrated as new to science. The new species shows overall similarity with P.chishuiensis Z.B.Xin, F.Wen & S.B.Zhou, which is also its sister species, based on molecular evidence. The new species can be distinguished from P.chishuiensis by the elongated rhizome, the relatively long indumentum on the peduncle, the shape, size and indumentum of calyx lobes, the location of the stamens in the corolla tube and the shape, size and indumentum of the stigma. We provide a diagnosis, detailed description, photographic images and a table with taxonomic notes to distinguish several other morphologically similar Petrocodon species.

5.
Stem Cells Int ; 2023: 6738768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845968

RESUMO

The effects of the regulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) by microribonucleic acid- (miR-) 455-3p on bone marrow stem cells' (BMSCs') chondrogenic development were examined based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. The alterations in miR-455-3p and PTEN were identified using osteoarthritis (OA) and healthy chondrocytes. Rats raised on the SD diet had their BMSCs isolated for chondrocyte-induced differentiation (blank group), transfected miR-455-3p mimic (mimic group), and inhibitor (inhibitor group). Besides, cell proliferation, alizarin red mineralization staining, and the activity of alkaline phosphatase (ALP) were detected. Real-time fluorescent quantitation polymerase chain reaction (PCR) and Western blot were utilized to detect Runx2, OPN, OSX, COL2A1 mRNA, and the difference between PI3K and AKT. Dual-luciferase reporter (DLR) genes were selected to analyze the target relationship of miR-455-3p to PTEN. It was demonstrated that miR-455-3p in OA was downregulated, while PTEN was upregulated (P < 0.05) in comparison to healthy chondrocytes (P < 0.05). Versus those in the blank group, alizarin red mineralization staining and the activity of ALP increased; RUNX, OPN, OSX, COL2A1 mRNA, p-PI3K, and p-AKT were elevated in the mimic group (P < 0.05). Versus those in the blank and mimic groups, alizarin red mineralization staining and the activity of ALP reduced; RUNX, OPN, OSX, COL2A1 mRNA, p-PI3K, and p-AKT were downregulated in the inhibitor group (P < 0.05). miR-455-3p could target PTEN to inhibit its expression, thus activating the PI3K/AKT signal pathway and promoting BMSCs chondrocyte-induced differentiation. The research results provided reference for the occurrence of OA and the study on therapeutic target.

6.
PLoS One ; 17(7): e0271301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895673

RESUMO

Bone fracture is an extremely dangerous health risk to human. Actually, cortical bone is often subjected to the complicated loading patterns. The mechanical properties and deformation mechanism under the complicated loading pattern could provide a more precise understanding for the bone fracture. For this purpose, the mechanical response and multi-scale deformation mechanism of cortical bone material were investigated by in-situ experimental research using the compression-torsion coupling loads as an example. It was found that the torsion strength and shear modulus all decreased under the compression-torsion coupling loads than single torsion load. This indicated bone would suffer greater risk of fracture under the compression-torsion coupling loads. Based on in-situ observation, it was found that the rapid reduction of the anisotropy of bone material under the compression load was the potential influencing factor. Because of the redistribution of the principal strain and the variations of cracks propagation, the comprehensive fracture pattern containing both transverse and longitudinal fracture was shown under the coupling loads, and finally resulted in the reduction of the torsion properties. This research could provide new references for researches on mechanical properties of cortical bone material under complicated loading patterns.


Assuntos
Osso Cortical , Fraturas Ósseas , Anisotropia , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
7.
Poult Sci ; 101(4): 101739, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220033

RESUMO

Pre-slaughter transport stress could induce multiple comprehensive variations in physiological and metabolic parameters of broilers. However, the entire metabolomics of pre-slaughter transport stress and supplementation of exogenous energy regulatory substances on broilers is still poorly understood. The metabolome characteristics of broilers subjected to 3 h pre-slaughter transport stress combined with 1,200 mg/kg guanidinoacetic acid (GAA1,200) supplementation were analyzed using gas chromatography-mass spectrometry (GC-MS) in this study. The results showed that, compared to the control group (no transport), 3 h pre-slaughter transport stress (T3h) decreased creatine (Cr), phosphocreatine (PCr) and adenosine triphosphate (ATP), and increased adenosine diphosphate (ADP), adenosine monophosphate (AMP) and the ratio of AMP to ATP in pectoralis muscle (PM) of broilers by high performance liquid chromatography (HPLC) analysis. However, GAA1,200 supplementation reversed the negative effects induced by 3 h pre-slaughter transport stress. Besides, GAA1,200 supplementation elevated mRNA expression of creatine transporter in PM. Our metabolomics approaches demonstrated that 38 and 48 significant metabolites were separately identified between the control group and T3h group, and T3h group and 3 h pre-slaughter transport stress combined with GAA1,200 supplementation group using the standard of variable importance in the projection values >1 and P < 0.05. Among these, the metabolites involved in amino acid metabolism (alanine, glycine, serine, threonine, cysteine , methionine, phenylalanine, tyrosine, and tryptophan), oxidative stress (3-methylhistidine, 1-methylhistidine and glutathione), non-protein amino acid (citrulline) metabolism, and energy metabolism (Cr, PCr, sarcosine, and glycocyamine) were confirmed through pathway enrichment analysis, which could be chosen as suitable candidate targets for further analysis of the effects of exogenous energy substances on broilers subjected to transport stress.


Assuntos
Ração Animal , Galinhas , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Ração Animal/análise , Animais , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Carne/análise , Metabolômica , Músculos Peitorais/metabolismo
8.
PhytoKeys ; 139: 13-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31997894

RESUMO

Paraphlomis kuankuoshuiensis (Lamiaceae), a new species found in the limestone areas of northern Guizhou, China, is described and illustrated in this paper. Based on its tubular-campanulate calyx, this taxon should be a member of sect. Paraphlomis Prain. The new species resembles P. patentisetulosa C.Y. Wu & H. W. Li, P. hispida C.Y. Wu, and P. hirsutissima C.Y. Wu & H.W. Li, but differs from these three taxa in the following aspects: the stems are very short (<7 cm), with one or two short internodes, giving the impression of having a tuft of basal leaves; it has sparsely setose hairs on the outer surface of the calyces and short fruiting calyces. The florescence, fruit period, habitat, and the geographical distribution of P. kuankuoshuiensis are also quite different from the three closely related species.

9.
PhytoKeys ; 134: 125-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719777

RESUMO

We describe and illustrate Sedum lipingense (Crassulaceae), a new species of stonecrop found in the limestone areas of SE Guizhou, China. Based on the presence of adaxially gibbous carpels and follicles, this taxon belongs to sect. Sedum S.H. Fu. The new species superficially resembles S. subtile Miquel and S. bulbiferum Makino but differs from these two taxa in its development of a basal leaf rosette during florescence. The nrDNA internal transcribed spacer (ITS) sequences also support the claim that this plant is a new species in the Sedum genus.

10.
PhytoKeys ; 132: 11-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579145

RESUMO

Primulina serrulata R.B.Zhang & F. Wen, a new species from a limestone area in southeastern Guizhou, China, is described and illustrated here. The new species is morphologically related to P. fimbrisepala (Hand.-Mazz.) Y.Z.Wang. We examined the morphological differences between these congeners and provide illustrations and photographs of this new species in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...