Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493242

RESUMO

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Variação Genética
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958621

RESUMO

Panicle development and grain production in crop species are essential breeding characteristics affected by the synthesis of auxin, which is influenced by flavin monooxygenase-encoding genes such as YUC (YUCCA) family members. In this trial, fourteen YUCs were identified and named uniformly in foxtail millet, an ancient crop species cultivated across the world. The phylogenetic analysis revealed that the SiYUCs were clustered into four subgroups; protein motif and gene structure analyses suggested that the closely clustered SiYUC genes were relatively conserved within each subgroup; while genome mapping analysis indicated that the SiYUC genes were unevenly distributed on foxtail millet chromosomes and colinear with other grass species. Transcription analysis revealed that the SiYUC genes differed greatly in expression pattern in different tissues and contained hormonal/light/stress-responding cis-elements. The haplotype characterization of SiYUC genes indicated many superior haplotypes of SiYUCs correlated with higher panicle and grain weight could be favorably selected by breeding. These results will be useful for the further study of the functional characteristics of SiYUC genes, particularly with regard to the marker-assisted pyramiding of beneficial haplotypes in foxtail millet breeding programs.


Assuntos
Setaria (Planta) , Haplótipos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Filogenia , Melhoramento Vegetal , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
J Integr Plant Biol ; 65(12): 2569-2586, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861067

RESUMO

Foxtail millet (Setaria italica), a vital drought-resistant crop, plays a significant role in ensuring food and nutritional security. However, its drought resistance mechanism is not fully understood. N6 -methyladenosine (m6 A) modification of RNA, a prevalent epi-transcriptomic modification in eukaryotes, provides a binding site for m6 A readers and affects plant growth and stress responses by regulating RNA metabolism. In this study, we unveiled that the YT521-B homology (YTH) family gene SiYTH1 positively regulated the drought tolerance of foxtail millet. Notably, the siyth1 mutant exhibited reduced stomatal closure and augmented accumulation of excessive H2 O2 under drought stress. Further investigations demonstrated that SiYTH1 positively regulated the transcripts harboring m6 A modification related to stomatal closure and reactive oxygen species (ROS) scavenging under drought stress. SiYTH1 was uniformly distributed in the cytoplasm of SiYTH1-GFP transgenic foxtail millet. It formed dynamic liquid-like SiYTH1 cytosol condensates in response to drought stress. Moreover, the cytoplasmic protein SiYTH1 was identified as a distinct m6 A reader, facilitating the stabilization of its directly bound SiARDP and ROS scavenging-related transcripts under drought stress. Furthermore, natural variation analysis revealed SiYTH1AGTG as the dominant allele responsible for drought tolerance in foxtail millet. Collectively, this study provides novel insights into the intricate mechanism of m6 A reader-mediated drought tolerance and presents a valuable genetic resource for improving drought tolerance in foxtail millet breeding.


Assuntos
Resistência à Seca , Setaria (Planta) , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Setaria (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
4.
Nat Commun ; 14(1): 3823, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380658

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Administração Cutânea , Glucose , Neoplasias Pancreáticas
5.
Nutrients ; 15(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375634

RESUMO

The ketogenic diet (KD) is hypothesized to impact tumor progression by altering tumor metabolism. In this study, we assessed the impact of an unrestricted KD on epithelial ovarian cancer (EOC) tumor growth, gene expression, and metabolite concentration in a mouse model. ID8 EOC cells, which were syngeneic with C57Bl/6J mouse strain and transfected with luciferase (ID8-luc), were injectedand monitored for tumor development. Female mice were fed either a strict KD, a high fat/low carbohydrate (HF/LC) diet, or a low fat/high carbohydrate (LF/HC) diet (n = 10 mice per group) ad libitum. EOC tumor growth was monitored weekly, and tumor burden was determined based on luciferase fluorescence (photons/second). At the endpoint (42 days), tumors were collected and processed for RNA sequencing. Plasma and tumor metabolites were evaluated using LC-MS. The KD-fed mice exhibited a statistically significant increase in tumor progression in comparison to the HF/LC- and LF/HC-fed groups (9.1 vs. 2.0 vs. 3.1-fold, respectively, p < 0.001). The EOC tumors of the KD-fed mice exhibited significant enrichment of the peroxisome proliferator-activated receptor (PPAR) signaling and fatty acid metabolism pathways based on the RNA sequencing analysis when compared to the LF/HC- and HF/LC-fed mice. Thus, unrestricted KD diet enhanced tumor progression in our mouse EOC model. KD was associated with the upregulation of fatty acid metabolism and regulation pathways, as well as enrichment of fatty acid and glutamine metabolites.


Assuntos
Dieta Cetogênica , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Carcinoma Epitelial do Ovário , Dieta Hiperlipídica/efeitos adversos , Carboidratos , Camundongos Endogâmicos C57BL
6.
BMC Bioinformatics ; 24(1): 199, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189023

RESUMO

BACKGROUND: Together with application of next-generation sequencing technologies and increased accumulation of genomic variation data in different organism species, an opportunity for effectively identification of superior alleles of functional genes to facilitate marker-assisted selection is emerging, and the clarification of haplotypes of functional genes is becoming an essential target in recent study works. RESULTS: In this paper, we describe an R package 'geneHapR' developed for haplotypes identification, statistics and visualization analysis of candidate genes. This package could integrate genotype data, genomic annotating information and phenotypic variation data to clarify genotype variations, evolutionary-ship, and morphological effects among haplotypes through variants visualization, network construction and phenotypic comparison. 'geneHapR' also provides functions for Linkage Disequilibrium block analysis and visualizing of haplotypes geo-distribution. CONCLUSIONS: The R package 'geneHapR' provided an easy-to-use tool for haplotype identification, statistic and visualization for candidate gene and will provide useful clues for gene functional dissection and molecular-assistant pyramiding of beneficial alleles of functional locus in future breeding programs.


Assuntos
Polimorfismo de Nucleotídeo Único , Haplótipos , Genótipo , Desequilíbrio de Ligação , Alelos
7.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185170

RESUMO

BACKGROUND: Macrophage-inducible C-type lectin (Mincle) is expressed on hepatic macrophages and senses ethanol (EtOH)-induced danger signals released from dying hepatocytes and promotes IL-1ß production. However, it remains unclear what and how EtOH-induced Mincle ligands activate downstream signaling events to mediate IL-1ß release and contribute to alcohol-associated liver disease (ALD). In this study, we investigated the association of circulating ß-glucosylceramide (ß-GluCer), an endogenous Mincle ligand, with severity of ALD and examined the mechanism by which ß-GluCer engages Mincle on hepatic macrophages to release IL-1ß in the absence of cell death and exacerbates ALD. METHOD AND RESULTS: Concentrations of ß-GluCer were increased in serum of patients with severe AH and correlated with disease severity. Challenge of hepatic macrophages with lipopolysaccharide and ß-GluCer induced formation of a Mincle and Gsdmd-dependent secretory complex containing chaperoned full-length gasdermin D (Hsp90-CDC37-NEDD4) with polyubiquitinated pro-IL-1ß and components of the Caspase 8-NLRP3 inflammasome loaded as cargo in small extracellular vesicles (sEVs). Gao-binge EtOH exposure to wild-type, but not Mincle-/- and Gsdmd-/-, mice increased release of IL-1ß-containing sEVs from liver explant cultures. Myeloid-specific deletion of Gsdmd similarly decreased the formation of sEVs by liver explant cultures and protected mice from EtOH-induced liver injury. sEVs collected from EtOH-fed wild-type, but not Gsdmd-/-, mice promoted injury of cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge EtOH-induced liver injury. CONCLUSION: ß-GluCer functions as a danger-associated molecular pattern activating Mincle-dependent gasdermin D-mediated formation and release of IL-1ß-containing sEVs, which in turn exacerbate hepatocyte cell death and contribute to the pathogenesis of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/toxicidade , Gasderminas , Células de Kupffer/metabolismo , Hepatopatias Alcoólicas/metabolismo
8.
Nat Commun ; 14(1): 3091, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248257

RESUMO

Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/metabolismo , Sementes/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
9.
J Lipid Res ; 64(4): 100349, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806709

RESUMO

We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Acilação , Adipócitos/metabolismo , Ácido Araquidônico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36412122

RESUMO

Androgens regulate broad physiologic and pathologic processes, including external genitalia development, prostate cancer progression, and anti-inflammatory effects in both cancer and asthma. In prostate cancer, several lines of evidence have implicated dietary and endogenous fatty acids in cell invasion, angiogenesis, and treatment resistance. However, the role of fatty acids in steroidogenesis and the mechanisms by which alterations in this pathway occur are not well understood. Here, we show that, of a panel of fatty acids tested, arachidonic acid and its specific metabolite 5-hydroxyeicosatetraenoic acid (5-HETE) regulate androgen metabolism. Arachidonic acid is metabolized to 5-HETE and reduces androgens by inducing aldo-keto reductase (AKR) family members AKR1C2 and AKR1C3 expression in human prostate, breast, and lung epithelial cells. Finally, we provide evidence that these effects require the expression of the antioxidant response sensor, nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings identify an interconnection between conventional fatty acid metabolism and steroid metabolism that has broad relevance to androgen physiology and inflammatory regulation.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Androgênios/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Ácidos Hidroxieicosatetraenoicos , Neoplasias da Próstata/metabolismo , Células Epiteliais/metabolismo
11.
Nat Commun ; 13(1): 2406, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504893

RESUMO

The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release ß-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1ß production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of ß-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Sistema Nervoso Central/metabolismo , Glucosilceramidas/metabolismo , Inflamação/metabolismo , Ligantes , Camundongos
12.
Nat Commun ; 13(1): 2748, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585086

RESUMO

Toll-like receptors/Interleukin-1 receptor signaling plays an important role in high-fat diet-induced adipose tissue dysfunction contributing to obesity-associated metabolic syndromes. Here, we show an unconventional IL-1R-IRAKM-Slc25a1 signaling axis in adipocytes that reprograms lipogenesis to promote diet-induced obesity. Adipocyte-specific deficiency of IRAKM reduces high-fat diet-induced body weight gain, increases whole body energy expenditure and improves insulin resistance, associated with decreased lipid accumulation and adipocyte cell sizes. IL-1ß stimulation induces the translocation of IRAKM Myddosome to mitochondria to promote de novo lipogenesis in adipocytes. Mechanistically, IRAKM interacts with and phosphorylates mitochondrial citrate carrier Slc25a1 to promote IL-1ß-induced mitochondrial citrate transport to cytosol and de novo lipogenesis. Moreover, IRAKM-Slc25a1 axis mediates IL-1ß induced Pgc1a acetylation to regulate thermogenic gene expression in adipocytes. IRAKM kinase-inactivation also attenuates high-fat diet-induced obesity. Taken together, our study suggests that the IL-1R-IRAKM-Slc25a1 signaling axis tightly links inflammation and adipocyte metabolism, indicating a potential therapeutic target for obesity.


Assuntos
Resistência à Insulina , Lipogênese , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Receptores de Interleucina-1/metabolismo , Termogênese
13.
Pulm Circ ; 11(4): 20458940211054325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888034

RESUMO

Alterations in metabolism and bioenergetics are hypothesized in the mechanisms leading to pulmonary vascular remodeling and heart failure in pulmonary hypertension (PH). To test this, we performed metabolomic analyses on 30 PH individuals and 12 controls. Furthermore, using 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography, we dichotomized PH patients into metabolic phenotypes of high and low right ventricle (RV) glucose uptake and followed them longitudinally. In support of metabolic alterations in PH and its progression, the high RV glucose group had higher RV systolic pressure (p < 0.001), worse RV function as measured by RV fractional area change and peak global longitudinal strain (both p < 0.05) and may be associated with poorer outcomes (33% death or transplantation in the high glucose RV uptake group compared to 7% in the low RV glucose uptake group at five years follow-up, log-ranked p = 0.07). Pathway enrichment analysis identified key metabolic pathways including fructose catabolism, arginine-nitric oxide metabolism, tricarboxylic acid cycle, and ketones metabolism. Integrative human protein-protein interactome network analysis of metabolomic and transcriptomic data identified key pathobiological pathways: arginine biosynthesis, tricarboxylic acid cycle, purine metabolism, hypoxia-inducible factor 1, and apelin signaling. These findings identify a PH metabolomic endophenotype, and for the first time link this to disease severity and outcomes.

14.
Front Plant Sci ; 12: 746166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095942

RESUMO

Characterization of drought-tolerance mechanisms during the jointing stage in foxtail millet under water-limited conditions is essential for improving the grain yield of this C4 crop species. In this trial, two drought-tolerant and two drought-sensitive cultivars were examined using transcriptomic dissections of three tissues (root, stem, and leaf) under naturally occurring water-limited conditions. We detected a total of 32,170 expressed genes and characterized 13,552 differentially expressed genes (DEGs) correlated with drought treatment. The majority of DEGs were identified in the root tissue, followed by leaf and stem tissues, and the number of DEGs identified in the stems of drought-sensitive cultivars was about two times higher than the drought-tolerant ones. A total of 127 differentially expressed transcription factors (DETFs) with different drought-responsive patterns were identified between drought-tolerant and drought-sensitive genotypes (including MYB, b-ZIP, ERF, and WRKY). Furthermore, a total of 34 modules were constructed for all expressed genes using a weighted gene co-expression network analysis (WGCNA), and seven modules were closely related to the drought treatment. A total of 1,343 hub genes (including RAB18, LEA14, and RD22) were detected in the drought-related module, and cell cycle and DNA replication-related transcriptional pathways were identified as vital regulators of drought tolerance in foxtail millet. The results of this study provide a comprehensive overview of how Setaria italica copes with drought-inflicted environments during the jointing stage through transcriptional regulating strategies in different organs and lays a foundation for the improvement of drought-tolerant cereal cultivars through genomic editing approaches in the future.

15.
Mol Metab ; 34: 136-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180553

RESUMO

OBJECTIVE: The most common kidney cancer, clear cell renal cell carcinoma (ccRCC), is closely associated with obesity. The "clear cell" variant of RCC gets its name from the large lipid droplets that accumulate in the tumor cells. Although renal lipid metabolism is altered in ccRCC, the mechanisms and lipids driving this are not well understood. METHODS: We used shotgun lipidomics in human ccRCC tumors and matched normal adjacent renal tissue. To assess MBOAT7s gene expression across tumor severity, we examined histologically graded human ccRCC samples. We then utilized genome editing in ccRCC cell lines to understand the role of MBOAT7 in ccRCC progression. RESULTS: We identified a lipid signature for ccRCC that includes an increase in arachidonic acid-enriched phosphatidylinositols (AA-PI). In parallel, we found that ccRCC tumors have increased expression of acyltransferase enzyme membrane bound O-acyltransferase domain containing 7 (MBOAT7) that contributes to AA-PI synthesis. In ccRCC patients, MBOAT7 expression increases with tumor grade, and increased MBOAT7 expression correlates with poor survival. Genetic deletion of MBOAT7 in ccRCC cells decreases proliferation and induces cell cycle arrest, and MBOAT7-/- cells fail to form tumors in vivo. RNAseq of MBOAT7-/- cells identified alterations in cell migration and extracellular matrix organization that were functionally validated in migration assays. CONCLUSIONS: This study highlights the accumulation of AA-PI in ccRCC and demonstrates a novel way to decrease the AA-PI pool in ccRCC by limiting MBOAT7. Our data reveal that metastatic ccRCC is associated with altered AA-PI metabolism and identify MBOAT7 as a novel target in advanced ccRCC.


Assuntos
Aciltransferases/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Aciltransferases/deficiência , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/patologia , Proteínas de Membrana/deficiência , Células Tumorais Cultivadas
16.
J Nutr ; 150(4): 775-783, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851339

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in the world. Choline deficiency has been well studied in the context of liver disease; however, less is known about the effects of choline supplementation in HCC. OBJECTIVE: The objective of this study was to test whether choline supplementation could influence the progression of HCC in a high-fat-diet (HFD)-driven mouse model. METHODS: Four-day-old male C57BL/6J mice were treated with the chemical carcinogen, 7,12-dimethylbenz[a]anthracene, and were randomly assigned at weaning to a cohort fed an HFD (60% kcal fat) or an HFD with supplemental choline (60% kcal fat, 1.2% choline; HFD+C) for 30 wk. Blood was isolated at 15 and 30 wk to measure immune cells by flow cytometry, and glucose-tolerance tests were performed 2 wk prior to killing. Overall tumor burden was quantified, hepatic lipids were measured enzymatically, and phosphatidylcholine species were measured by targeted MS methods. Gene expression and mitochondrial DNA were quantified by quantitative PCR. RESULTS: HFD+C mice exhibited a 50-90% increase in both circulating choline and betaine concentrations in the fed state (P ≤ 0.05). Choline supplementation resulted in a 55% decrease in total tumor numbers, a 67% decrease in tumor surface area, and a 50% decrease in hepatic steatosis after 30 wk of diet (P ≤ 0.05). Choline supplementation increased the abundance of mitochondria and the relative expression of ß-oxidation genes by 21% and ∼75-100%, respectively, in the liver. HFD+C attenuated circulating myeloid-derived suppressor cells at 15 wk of feeding (P ≤ 0.05). CONCLUSIONS: Choline supplementation attenuated HFD-induced HCC and hepatic steatosis in male C57BL/6J mice. These results suggest a therapeutic benefit of choline supplementation in blunting HCC progression.


Assuntos
Colina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Animais , Betaína/sangue , Colina/sangue , DNA Mitocondrial/análise , Suplementos Nutricionais , Fígado Gorduroso/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/química , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia , Tamanho do Órgão/efeitos dos fármacos
17.
Elife ; 82019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31621579

RESUMO

Recent studies have identified a genetic variant rs641738 near two genes encoding membrane bound O-acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4) that associate with increased risk of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcohol-related cirrhosis, and liver fibrosis in those infected with viral hepatitis (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017). Based on hepatic expression quantitative trait loci analysis, it has been suggested that MBOAT7 loss of function promotes liver disease progression (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017), but this has never been formally tested. Here we show that Mboat7 loss, but not Tmc4, in mice is sufficient to promote the progression of NAFLD in the setting of high fat diet. Mboat7 loss of function is associated with accumulation of its substrate lysophosphatidylinositol (LPI) lipids, and direct administration of LPI promotes hepatic inflammatory and fibrotic transcriptional changes in an Mboat7-dependent manner. These studies reveal a novel role for MBOAT7-driven acylation of LPI lipids in suppressing the progression of NAFLD.


Assuntos
Aciltransferases/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Acilação , Animais , Progressão da Doença , Humanos , Camundongos
18.
Cell Rep ; 27(4): 1062-1072.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018124

RESUMO

Gap-junction-mediated cell-cell communication enables tumor cells to synchronize complex processes. We previously found that glioblastoma cancer stem cells (CSCs) express higher levels of the gap junction protein Cx46 compared to non-stem tumor cells (non-CSCs) and that this was necessary and sufficient for CSC maintenance. To understand the mechanism underlying this requirement, we use point mutants to disrupt specific functions of Cx46 and find that Cx46-mediated gap-junction coupling is critical for CSCs. To develop a Cx46 targeting strategy, we screen a clinically relevant small molecule library and identify clofazimine as an inhibitor of Cx46-specific cell-cell communication. Clofazimine attenuates proliferation, self-renewal, and tumor growth and synergizes with temozolomide to induce apoptosis. Although clofazimine does not cross the blood-brain barrier, the combination of clofazimine derivatives optimized for brain penetrance with standard-of-care therapies may target glioblastoma CSCs. Furthermore, these results demonstrate the importance of targeting cell-cell communication as an anti-cancer therapy.


Assuntos
Conexina 43/fisiologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Clofazimina/farmacologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Análise Mutacional de DNA , Junções Comunicantes/fisiologia , Glioblastoma/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Stroke Cerebrovasc Dis ; 27(11): 3030-3035, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30093203

RESUMO

BACKGROUND: The incidence and predictors for in-stent restenosis (ISR) was not fully explored. We aim to investigate the incidence and predictors of ISR after stenting at the origin of vertebral artery. MATERIALS AND METHODS: Two hundred and six patients with 229 stents implantation between July 1, 2005 and July 31, 2015 were included in the study. All patients underwent conventional clinical and angiographic (digital subtraction angiography) follow-up at around 6 months post procedure. ISR was defined as greater than 50% stenosis within or immediately (within 5 mm) adjacent to the stent. Multivariate Cox regression analyses were utilized to investigate the predictors for ISR. RESULTS: The ISR was found in 30 patients (30/206, 14.6%) with 31 lesions (31/229, 13.5%) with the mean follow-up duration of 11.1-month (range: 3 - 92 months). Stent diameter (hazard ratio 0.504, 95% confidence interval 0.294 - 0.864) was an independent predictor for ISR. CONCLUSION: ISR rate after Vertebral artery ostium stent placement is acceptable, which was conversely associated with the stent diameter.


Assuntos
Procedimentos Endovasculares/instrumentação , Stents , Artéria Vertebral , Insuficiência Vertebrobasilar/terapia , Idoso , Angiografia Digital , China/epidemiologia , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Incidência , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Recidiva , Sistema de Registros , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/fisiopatologia , Insuficiência Vertebrobasilar/diagnóstico por imagem , Insuficiência Vertebrobasilar/epidemiologia , Insuficiência Vertebrobasilar/fisiopatologia
20.
Int J Neurosci ; 128(4): 311-317, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28830290

RESUMO

BACKGROUND: A loading dose of antiplatelets reduces in-stent thrombosis after stent implantation. However, whether it is safe in patients undergoing acute stenting after intravenous recombinant tissue plasminogen activator (rt-PA) is unclear. METHODS: A case series of acute ischemic stroke patients treated with intravenous rt-PA followed by emergent stenting were prospectively included in Jinling Hospital Stroke Unit. An emergent loading dose of antiplatelets (aspirin 300 mg and clopidogrel 300 mg) were administered to all patients through a nasogastric tube immediately before stenting. Clinical and angiographic outcomes were evaluated in these patients. RESULTS: A total of 12 patients were included. The median of NIHSS score on admission was 15 points (interquartile range 11-19). The median of time from stroke symptom onset to start IV rt-PA and stent placement was 172 min (interquartile range 123.75-189) and 311.5 min (interquartile range 285.5-349.5), respectively. All patients reached complete or partial recanalization (TICI ≥2a). One patient occurred hemorrhagic transformation at 24 h following the emergent loading dose of antiplatelets. A favorable outcome as defined by mRS ≤2 at 90 days was obtained in 58.3% (7/12) of all patients. CONCLUSION: Our finding preliminary suggested that an emergent loading dose of antiplatelets may be safe and feasible for acute stenting after IV rt-PA.


Assuntos
Isquemia Encefálica/etiologia , Fibrinolíticos/administração & dosagem , Stents , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual/administração & dosagem , Administração Intravenosa , Idoso , Aspirina/uso terapêutico , Clopidogrel , Angiografia por Tomografia Computadorizada , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Acidente Vascular Cerebral/diagnóstico por imagem , Ticlopidina/análogos & derivados , Ticlopidina/uso terapêutico , Tomógrafos Computadorizados , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...