Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(4): 112, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568250

RESUMO

KEY MESSAGE: Purine permease PUP11 is essential for rice seed development, regulates the seed setting rate, and influences the cytokinin content, sugar transport, and starch biosynthesis during grain development. The distribution of cytokinins in plant tissues determines plant growth and development and is regulated by several cytokinin transporters, including purine permease (PUP). Thirteen PUP genes have been identified within the rice genome; however, the functions of most of these genes remain poorly understood. We found that pup11 mutants showed extremely low seed setting rates and a unique filled seed distribution. Moreover, seed formation arrest in these mutants was associated with the disappearance of accumulated starch 10 days after flowering. PUP11 has two major transcripts with different expression patterns and subcellular locations, and further studies revealed that they have redundant positive roles in regulating the seed setting rate. We also found that type-A Response Regulator (RR) genes were upregulated in the developing grains of the pup11 mutant compared with those in the wild type. The results also showed that PUP11 altered the expression of several sucrose transporters and significantly upregulated certain starch biosynthesis genes. In summary, our results indicate that PUP11 influences the rice seed setting rate by regulating sucrose transport and starch accumulation during grain filling. This research provides new insights into the relationship between cytokinins and seed development, which may help improve cereal yield.


Assuntos
Proteínas de Transporte de Nucleobases , Oryza , Oryza/genética , Sementes/genética , Grão Comestível/genética , Citocininas , Proteínas de Membrana Transportadoras , Amido , Sacarose
2.
Plant Physiol Biochem ; 200: 107760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207494

RESUMO

Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Ustilaginales/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Natl Sci Rev ; 7(7): 1116-1117, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34692131

RESUMO

This perspective first expounds on the reasons behind the introduction of the game-based control systems (GBCS), delineates their features, provides some examples, and put forward some research problems. The paper then points out that more complex regulation problems on the now rapidly developing man-machine integration systems may also be investigated by expanding the scope of the GBCS.

4.
Cell Cycle ; 17(12): 1471-1486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29965788

RESUMO

Oocyte is arrested at metaphase of the second meiosis until fertilization switching on [Ca2+]i oscillations. Oocyte activation inefficiency is the most challenging problem for failed fertilization and embryonic development. Mitochondrial function and intracellular [Ca2+]i oscillations are two critical factors for the oocyte's developmental potential. We aimed to understand the possible correlation between mitochondrial function and [Ca2+]i oscillations in oocytes. To this end, mitochondrial uncoupler CCCP which damages mitochondrial function and two small molecule mitochondrial agonists, L-carnitine (LC) and BGP-15, were used to examine the regulation of [Ca2+]i by mitochondrial functions. With increasing CCCP concentrations, [Ca2+]i oscillations were gradually diminished and high concentrations of CCCP led to oocyte death. LC enhanced mitochondrial membrane potential and [Ca2+]i oscillations and even improved the damage induced by CCCP, however, BGP-15 had no beneficial effect on oocyte activation. We have found that mitochondrial function plays a vital role in the generation of [Ca2+]i oscillations in oocytes, and thus mitochondria may interact with the ER to generate [Ca2+]i oscillations during oocyte activation. Improvement of mitochondrial functions with small molecules can be expected to improve oocyte activation and embryonic development in infertile patients without invasive micromanipulation.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Meiose/fisiologia , Mitocôndrias/metabolismo , Oócitos/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carnitina/metabolismo , Ciclo Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos ICR , Oogênese/fisiologia , Oximas/metabolismo , Piperidinas/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...