Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2302603120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579161

RESUMO

Certain transmembrane and membrane-tethered signaling proteins export from cilia as BBSome cargoes via the outward BBSome transition zone (TZ) diffusion pathway, indispensable for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. Murine Rab-like 2 (Rabl2) GTPase resembles Chlamydomonas Arf-like 3 (ARL3) GTPase in promoting outward TZ passage of the signaling protein cargo-laden BBSome. During this process, ARL3 binds to and recruits the retrograde IFT train-dissociated BBSome as its effector to diffuse through the TZ for ciliary retrieval, while how RABL2 and ARL3 cross talk in this event remains uncertain. Here, we report that Chlamydomonas RABL2 in a GTP-bound form (RABL2GTP) cycles through cilia via IFT as an IFT-B1 cargo, dissociates from retrograde IFT trains at a ciliary region right above the TZ, and converts to RABL2GDP for activating ARL3GDP as an ARL3 guanine nucleotide exchange factor. This confers ARL3GTP to detach from the ciliary membrane and become available for binding and recruiting the phospholipase D (PLD)-laden BBSome, autonomous of retrograde IFT association, to diffuse through the TZ for ciliary retrieval. Afterward, RABL2GDP exits cilia by being bound to the ARL3GTP/BBSome entity as a BBSome cargo. Our data identify ciliary signaling proteins exported from cilia via the RABL2-ARL3 cascade-mediated outward BBSome TZ diffusion pathway. According to this model, hedgehog signaling defect-induced Bardet-Biedl syndrome caused by RABL2 mutations in humans could be well explained in a mutation-specific manner, providing us with a mechanistic understanding behind the outward BBSome TZ passage required for proper ciliary signaling.


Assuntos
Cílios , Proteínas Hedgehog , Humanos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/genética , Proteínas rab de Ligação ao GTP/metabolismo , Chlamydomonas
2.
Proc Natl Acad Sci U S A ; 120(13): e2218819120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943875

RESUMO

Certain ciliary transmembrane and membrane-tethered signaling proteins migrate from the ciliary tip to base via retrograde intraflagellar transport (IFT), essential for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. During this process, the BBSome functions as an adaptor between retrograde IFT trains and these signaling protein cargoes. The Arf-like 13 (ARL13) small GTPase resembles ARL6/BBS3 in facilitating these signaling cargoes to couple with the BBSome at the ciliary tip prior to loading onto retrograde IFT trains for transporting towards the ciliary base, while the molecular basis for how this intricate coupling event happens remains elusive. Here, we report that Chlamydomonas ARL13 only in a GTP-bound form (ARL13GTP) anchors to the membrane for diffusing into cilia. Upon entering cilia, ARL13 undergoes GTPase cycle for shuttling between the ciliary membrane (ARL13GTP) and matrix (ARL13GDP). To achieve this goal, the ciliary membrane-anchored BBS3GTP binds the ciliary matrix-residing ARL13GDP to activate the latter as an ARL13 guanine nucleotide exchange factor. At the ciliary tip, ARL13GTP recruits the ciliary matrix-residing and post-remodeled BBSome as an ARL13 effector to anchor to the ciliary membrane. This makes the BBSome spatiotemporally become available for the ciliary membrane-tethered phospholipase D (PLD) to couple with. Afterward, ARL13GTP hydrolyzes GTP for releasing the PLD-laden BBSome to load onto retrograde IFT trains. According to this model, hedgehog signaling defects associated with ARL13b and BBS3 mutations in humans could be satisfactorily explained, providing us a mechanistic understanding behind BBSome-cargo coupling required for proper ciliary signaling.


Assuntos
Síndrome de Bardet-Biedl , Cílios , Humanos , Cílios/metabolismo , Transporte Proteico/genética , Síndrome de Bardet-Biedl/genética , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Guanosina Trifosfato/metabolismo , Flagelos/metabolismo
3.
J Cell Physiol ; 238(3): 549-565, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852649

RESUMO

Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.


Assuntos
Chlamydomonas , Cílios , Nucleotídeos , Fosfolipase D , Proteínas rab de Ligação ao GTP , Cílios/química , Cílios/metabolismo , Flagelos/química , Flagelos/metabolismo , Fosfolipase D/metabolismo , Transporte Proteico , Transdução de Sinais , Chlamydomonas/citologia , Chlamydomonas/enzimologia , Chlamydomonas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
4.
J Cell Biol ; 221(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36129685

RESUMO

Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo-laden BBSomes pass the transition zone (TZ) for ciliary retrieval, but how this passage is controlled remains elusive. Here, we show that phospholipase D (PLD)-laden BBSomes shed from retrograde IFT trains at the proximal ciliary region right above the TZ to act as Arf-like 3 (ARL3) GTPase-specific effectors in Chlamydomonas cilia. Under physiological condition, ARL3GDP binds to the membrane for diffusing into cilia. Following nucleotide exchange, ARL3GTP detaches from the ciliary membrane, binds to retrograde IFT train-shed and PLD-laden BBSomes at the proximal ciliary region right above the TZ, and recruits them to pass the TZ for ciliary retrieval likely via diffusion. ARL3 mediates the ciliary dynamics of certain signaling molecules through facilitating BBSome ciliary retrieval, providing a mechanistic understanding behind why ARL3-related Joubert syndrome shares overlapping phenotypes with Bardet-Biedl syndrome.


Assuntos
Fatores de Ribosilação do ADP , Chlamydomonas , Cílios , Transporte Proteico , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos/metabolismo , Fosfolipase D/metabolismo
5.
Surg Radiol Anat ; 44(7): 987-990, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838777

RESUMO

PURPOSE: To report a previously undocumented variant of sternalis. METHODS: An unusual muscle was observed during routine dissection. RESULTS: The sternalis muscle located in the right thoracic region originated from the superior portion of the rectus abdominis sheath and 5-6th costal cartilages, crossed the midline and attached at the sternum. The muscle fibers then ascended with the left sternocleidomastoid muscle as an additional fasciculus, of which the superior ends were finally terminated at the left mastoid process. The sternalis muscle of the thoracic region was innervated by the anterior cutaneous branches of right intercostal nerve, while the additional fasciculus ascended with the left sternocleidomastoid muscle was innervated by the branches of left accessory nerve. CONCLUSIONS: This study presents a unilateral sternalis muscle with the contralateral sternocleidomastoid variation. It will enhance the exhaustive classification of sternalis, and provide significant information to radiologists, angiologists and surgeons for better interpretation of images and safer interventions.


Assuntos
Parede Torácica , Cadáver , Humanos , Músculo Esquelético/inervação , Músculos do Pescoço/diagnóstico por imagem , Esterno/diagnóstico por imagem
6.
Proc Natl Acad Sci U S A ; 119(27): e2206075119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759663

RESUMO

The master transcriptional repressor DREAM (dimerization partner, RB-like, E2F and multivulval class B) complex regulates the cell cycle in eukaryotes, but much remains unknown about how it transmits repressive signals on chromatin to the primary transcriptional machinery (e.g., RNA polymerase II [Pol II]). Through a forward genetic screen, we identified BTE1 (barrier of transcription elongation 1), a plant-specific component of the DREAM complex. The subsequent characterization demonstrated that DREAM complex containing BTE1 antagonizes the activity of Complex Proteins Associated with Set1 (COMPASS)-like complex to repress H3K4me3 occupancy and inhibits Pol II elongation at DREAM target genes. We showed that BTE1 is recruited to chromatin at the promoter-proximal regions of target genes by E2F transcription factors. DREAM target genes exhibit characteristic enrichment of H2A.Z and H3K4me2 modification on chromatin. We further showed that BTE1 directly interacts with WDR5A, a core component of COMPASS-like complex, repressing WDR5A chromatin binding and the elongation of transcription on DREAM target genes. H3K4me3 is known to correlate with the Pol II transcription activation and promotes efficient elongation. Thus, our study illustrates a transcriptional repression mechanism by which the DREAM complex dampens H3K4me3 deposition at a set of genes through its interaction with WDR5A.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446551

RESUMO

Many G protein-coupled receptors and other signaling proteins localize to the ciliary membrane for regulating diverse cellular processes. The BBSome composed of multiple Bardet-Biedl syndrome (BBS) proteins is an intraflagellar transport (IFT) cargo adaptor essential for sorting signaling proteins in and/or out of cilia via IFT. Leucine zipper transcription factor-like 1 (LZTFL1) protein mediates ciliary signaling by controlling BBSome ciliary content, reflecting how LZTFL1 mutations could cause BBS. However, the mechanistic mechanism underlying this process remains elusive thus far. Here, we show that LZTFL1 maintains BBSome ciliary dynamics by finely controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip simultaneously in Chlamydomonas reinhardtii LZTFL1 directs BBSome recruitment to the basal body via promoting basal body targeting of Arf-like 6 GTPase BBS3, thus deciding the BBSome amount available for loading onto anterograde IFT trains for entering cilia. Meanwhile, LZTFL1 stabilizes the IFT25/27 component of the IFT-B1 subcomplex in the cell body so as to control its presence and amount at the basal body for entering cilia. Since IFT25/27 promotes BBSome reassembly at the ciliary tip for loading onto retrograde IFT trains, LZTFL1 thus also directs BBSome removal out of cilia. Therefore, LZTFL1 dysfunction deprives the BBSome of ciliary presence and generates Chlamydomonas cells defective in phototaxis. In summary, our data propose that LZTFL1 maintains BBSome dynamics in cilia by such a dual-mode system, providing insights into how LZTFL1 mediates ciliary signaling through maintaining BBSome ciliary dynamics and the pathogenetic mechanism of the BBS disorder as well.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Fototaxia , Fatores de Transcrição/fisiologia , Síndrome de Bardet-Biedl , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Transdução de Sinais
8.
NPJ Digit Med ; 3: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435701

RESUMO

We have designed a deep-learning model, an "Artificial Intelligent Endoscopist (a.k.a. AI-doscopist)", to localise colonic neoplasia during colonoscopy. This study aims to evaluate the agreement between endoscopists and AI-doscopist for colorectal neoplasm localisation. AI-doscopist was pre-trained by 1.2 million non-medical images and fine-tuned by 291,090 colonoscopy and non-medical images. The colonoscopy images were obtained from six databases, where the colonoscopy images were classified into 13 categories and the polyps' locations were marked image-by-image by the smallest bounding boxes. Seven categories of non-medical images, which were believed to share some common features with colorectal polyps, were downloaded from an online search engine. Written informed consent were obtained from 144 patients who underwent colonoscopy and their full colonoscopy videos were prospectively recorded for evaluation. A total of 128 suspicious lesions were resected or biopsied for histological confirmation. When evaluated image-by-image on the 144 full colonoscopies, the specificity of AI-doscopist was 93.3%. AI-doscopist were able to localise 124 out of 128 polyps (polyp-based sensitivity = 96.9%). Furthermore, after reviewing the suspected regions highlighted by AI-doscopist in a 102-patient cohort, an endoscopist has high confidence in recognizing four missed polyps in three patients who were not diagnosed with any lesion during their original colonoscopies. In summary, AI-doscopist can localise 96.9% of the polyps resected by the endoscopists. If AI-doscopist were to be used in real-time, it can potentially assist endoscopists in detecting one more patient with polyp in every 20-33 colonoscopies.

9.
IEEE J Biomed Health Inform ; 24(2): 486-492, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31094697

RESUMO

Estimating hospital mortality of patients is important in assisting clinicians to make decisions and hospital providers to allocate resources. This paper proposed a multi-task recurrent neural network with attention mechanisms to predict patients' hospital mortality, using reconstruction of patients' physiological time series as an auxiliary task. Experiments were conducted on a large public electronic health record database, i.e., MIMIC-III. Fifteen physiological measurements during the first 24 h of critical care were used to predict death before hospital discharge. Compared with the conventional simplified acute physiology score (SAPS-II), the proposed multi-task learning model achieved better sensitivity (0.503 ± 0.020 versus 0.365 ± 0.021), when predictions were made based on the same 24-h observation period. The multi-task learning model is recommended to be updated daily with at least a 6-h observation period, in order for it to perform similarly or better than the SAPS-II. In the future, the need for intervention can be considered as another task to further optimize the performance of the multi-task learning model.


Assuntos
Mortalidade Hospitalar , Redes Neurais de Computação , Idoso , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4142-4145, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441267

RESUMO

Algorithms for localising colorectal polyps have been studied extensively; however, they were often trained and tested using the same database. In this study, we present a new application of a unified and real-time object detector based on You-Only-Look-Once (YOLO) convolutional neural network (CNN) for localizing polyps with bounding boxes in endoscopic images. The model was first pre-trained with non-medical images and then fine-tuned with colonoscopic images from three different databases, including an image set we collected from 106 patients using narrow-band (NB) imaging endoscopy. YOLO was tested on 196 white light (WL) images of an independent public database. YOLO achieved a precision of 79.3% and sensitivity of 68.3% with time efficiency of 0.06 sec/frame in the localization task when trained by augmented images from multiple WL databases. In conclusion, YOLO has great potential to be used to assist endoscopists in localising colorectal polyps during endoscopy. CNN features of WL and NB endoscopic images are different and should be considered separately. A large-scale database that covers different scenarios, imaging modalities and scales is lacking but crucial in order to bring this research into reality.


Assuntos
Pólipos do Colo , Algoritmos , Colonoscopia , Humanos , Imagem de Banda Estreita , Redes Neurais de Computação
11.
Pattern Recognit ; 83: 209-219, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31105338

RESUMO

A computer-aided detection (CAD) tool for locating and detecting polyps can help reduce the chance of missing polyps during colonoscopy. Nevertheless, state-of-the-art algorithms were either computationally complex or suffered from low sensitivity and therefore unsuitable to be used in real clinical setting. In this paper, a novel regression-based Convolutional Neural Network (CNN) pipeline is presented for polyp detection during colonoscopy. The proposed pipeline was constructed in two parts: 1) to learn the spatial features of colorectal polyps, a fast object detection algorithm named ResYOLO was pre-trained with a large non-medical image database and further fine-tuned with colonoscopic images extracted from videos; and 2) temporal information was incorporated via a tracker named Efficient Convolution Operators (ECO) for refining the detection results given by ResYOLO. Evaluated on 17,574 frames extracted from 18 endoscopic videos of the AsuMayoDB, the proposed method was able to detect frames with polyps with a precision of 88.6%, recall of 71.6% and processing speed of 6.5 frames per second, i.e. the method can accurately locate polyps in more frames and at a faster speed compared to existing methods. In conclusion, the proposed method has great potential to be used to assist endoscopists in tracking polyps during colonoscopy.

12.
IEEE J Biomed Health Inform ; 21(1): 41-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114040

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Although polypectomy at early stage reduces CRC incidence, 90% of the polyps are small and diminutive, where removal of them poses risks to patients that may outweigh the benefits. Correctly detecting and predicting polyp type during colonoscopy allows endoscopists to resect and discard the tissue without submitting it for histology, saving time, and costs. Nevertheless, human visual observation of early stage polyps varies. Therefore, this paper aims at developing a fully automatic algorithm to detect and classify hyperplastic and adenomatous colorectal polyps. Adenomatous polyps should be removed, whereas distal diminutive hyperplastic polyps are considered clinically insignificant and may be left in situ . A novel transfer learning application is proposed utilizing features learned from big nonmedical datasets with 1.4-2.5 million images using deep convolutional neural network. The endoscopic images we collected for experiment were taken under random lighting conditions, zooming and optical magnification, including 1104 endoscopic nonpolyp images taken under both white-light and narrowband imaging (NBI) endoscopy and 826 NBI endoscopic polyp images, of which 263 images were hyperplasia and 563 were adenoma as confirmed by histology. The proposed method identified polyp images from nonpolyp images in the beginning followed by predicting the polyp histology. When compared with visual inspection by endoscopists, the results of this study show that the proposed method has similar precision (87.3% versus 86.4%) but a higher recall rate (87.6% versus 77.0%) and a higher accuracy (85.9% versus 74.3%). In conclusion, automatic algorithms can assist endoscopists in identifying polyps that are adenomatous but have been incorrectly judged as hyperplasia and, therefore, enable timely resection of these polyps at an early stage before they develop into invasive cancer.


Assuntos
Pólipos do Colo/classificação , Pólipos do Colo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Colonoscopia , Humanos , Aprendizado de Máquina , Curva ROC
13.
IEEE Trans Biomed Eng ; 64(5): 1106-1114, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27416587

RESUMO

OBJECTIVE: Wireless capsule endoscope (WCE) is a revolutionary approach to diagnose small bowel pathologies. Currently available WCEs are mostly passive devices with image capturing function only, while on-going efforts have been placed on robotizing WCEs or to enhance them with therapeutic functions. In this paper, the authors present a novel inflatable WCE for haemostasis in the gastrointestinal (GI) tracts by balloon tamponade effect. METHODS: The proposed wireless capsule consists of a balloon that can be inflated using the endothermic reaction of acid and base. When the balloon reached a precalculated pressure level, it is able to stop at a bleeding site in the bowel, and achieve haemostasis by tamponade effect. The prototype is 14 mm in diameter, with three sections of 13, 35, and 12 mm in length, respectively. The three sections are linked together with flexible joints and enclosed in a silicone balloon. The prototypes were tested in ex vivo porcine intestine models. RESULTS: In the ten ex vivo trials conducted, the inflatable wireless capsule achieved average balloon pressure of 46.0 mmHg and withstood average maximum longitudinal pulling force at 1.46 N. An in vivo study was carried out as a proof-of-concept for treating bleeding in a porcine model. The proposed inflatable WCE succeeded in the animal test by controlling haemostasis within 5 min. No rebleeding was observed in the next 20 min. CONCLUSION: The results suggested that the inflatable capsule with a real-time bleeding detection algorithm can be implemented. Moreover, the proposed inflatable WCE prototype can achieve haemorrhage control in the lower GI. SIGNIFICANCE: To our best knowledge, this is the first study that demonstrated the potential to treat GI haemorrhage by an inflatable WCE. The proposed capsule enables the development of a closed-loop system based on a body sensor network to provide early treatment of GI bleeding for p-medicine.


Assuntos
Oclusão com Balão/instrumentação , Cápsulas Endoscópicas , Endoscopia por Cápsula/instrumentação , Hemorragia Gastrointestinal/patologia , Hemorragia Gastrointestinal/terapia , Tecnologia sem Fio/instrumentação , Animais , Oclusão com Balão/métodos , Endoscopia por Cápsula/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Sistemas Microeletromecânicos/instrumentação , Miniaturização , Suínos , Resultado do Tratamento
14.
J Med Syst ; 39(10): 309, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276017

RESUMO

Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.


Assuntos
Monitorização Ambulatorial/instrumentação , Design de Software , Telemetria/instrumentação , Humanos , Lactente , Recém-Nascido , Morte Súbita do Lactente/prevenção & controle , Síndrome , Fatores de Tempo , Tecnologia sem Fio
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 36(5): 338-41, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-23289336

RESUMO

The principle of human respiratory function test is decleared. The innovative testing parameters is proposed to optimize traditional calculation parameters based on a respiratory function test of one-time max respiratory flow and pressure. The parameters of respiratory function evaluation was preliminarily verified, and we have already got the expected experimental result. The research can be a valuable reference for the following respiratory function test in future.


Assuntos
Algoritmos , Testes de Função Respiratória , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...