Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930300

RESUMO

The Split Hopkinson pressure bar (SHPB) is widely used for characterizing the mechanical behavior of materials at high strain rates. One of the most challenging factors is achieving constant strain rate (CSR) loading of the specimen at a certain strain rate. Obtaining the effective incident pulse based on the experimental material for achieving CSR loading remains unresolved. This research focuses on obtaining the proper incident pulse for achieving constant strain rate loading using the pulse-shaping technique. A parameterized objective incident model in terms of the strain rate and quasi-static (or dynamic stress-strain) behavior of the material is established utilizing the three-wave method. Experimental pulses that closely resemble the desired objective pulses can be generated by adjusting parameters such as the geometry of the shaper, the shaper material, striker velocities, and the length of the striker according to the pulse-shaping model. The model is applied to the design of the incident pulse for B4CP/2024Al composite material, and the dynamic stress-strain curves at different strain rates are obtained under CSRs. This model provides effective guidance for selecting an appropriate shaper and achieving CSR loading in SHPB tests.

2.
Materials (Basel) ; 16(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959444

RESUMO

In this study, Al-B4C/Al laminated composites with high interlayer bonding strength were fabricated by integrated hot-pressed sintering accompanied with hot rolling. The mechanical properties and interface behavior of the Al-B4C/Al laminated composites were investigated under quasi-static and impact loading. The results show that the Al-B4C/Al laminated composites obtain a high interface bonding strength, because no interlayer delamination occurs even after fractures under quasi-static and impact loads. The Al-B4C/Al laminated composites exhibit a better comprehensive mechanical performance, and the fracture can be delayed due to the high bonding strength interface. Moreover, laminated composites can absorb more impact energy than the monolithic material under impact loading due to the stress transition and relaxation.

3.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687488

RESUMO

Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose an aluminum matrix composite using pressure infiltration, containing an array of ceramic balls, the reinforcement of which consists of centimeter-scale SiC balls and micron-scale B4C particles. Three different array layouts were designed and fabricated: compact balls in the front panel (F-C), non-compact balls in the front panel (F-NC), and compact balls inside the target (I-C). The penetration resistance properties were tested using a 12.7 mm armor-piercing incendiary (API). The results show that there are no significant internal defects, and the ceramic balls are well-bonded with the matrix composite. The F-NC structure behaves the best penetration resistance with minimal overall damage; the I-C structure has a large area of spalling and the most serious damage. Finite element simulation reveals that the ceramic balls play a major role in projectile erosion; in the non-compact structure, the composite materials between the ceramic balls can effectively disperse the stress, thereby avoiding the damage caused by direct contact between ceramic balls and improving the efficiency of ceramic ball erosion projectiles. Furthermore, it is essential to have a certain thickness of supporting materials to prevent spalling failure caused by stress wave transmission during penetration. This multi-scale composite exhibits excellent ballistic performance, providing valuable insights for developing anti-penetration composite armor in future applications.

4.
RSC Adv ; 9(18): 9937-9945, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520898

RESUMO

Nanoporous silver (NPS) with an extreme coarsened 3-dimensional bi-continuous ligament and nanopore structure could be prepared by chemical dealloying with high-intensity ultrasonic irradiation (UI). The formation mechanism of NPS dealloying with UI was different from NPS obtained through free corrosion. It evolved into NPS with a new lump forming-disintegrating mechanism. Ultrasonic irradiation had strong effects on the dealloying process of NPS. The stirring effect produced by ultrasonic vibration could promote the corrosion of Cu and facilitate the diffusion of Ag atoms. Therefore, the coarsening rate of the ligament was increased significantly. Dealloying assisted by UI could generate an extremely coarsened microstructure of which ligament and pore sizes were much larger than those obtained from free corrosion dealloying.

5.
RSC Adv ; 8(17): 9462-9470, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35541846

RESUMO

Nanoporous silver (NPS) was fabricated by dealloying Ag-Al alloy ribbons with nominal compositions of 30, 35 and 40 at% Ag (corresponding to hypoeutectic composition, eutectic composition and hypereutectic composition, respectively). The microstructures of the Ag-Al precursor and as-dealloyed samples were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) as well as via focused ion beam (FIB) technique. We concluded that with the increase in Ag content from 30 to 40 at%, the diameter of ligament increased from 70 ± 15 nm to 115 ± 35 nm. Due to the method of crystalline solidification and the distribution of α-Al(Ag) and γ-Ag2Al phases, the as-dealloyed Ag35Al65 alloy exhibited a homogeneous ligament/pore structure, whereas the microstructures of Ag30Al70 and Ag40Al60 showed thinner and coarser ligament structures, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...