Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731960

RESUMO

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Assuntos
Carbono , Carvão Vegetal , Purificação da Água , Madeira , Purificação da Água/métodos , Carvão Vegetal/química , Catálise , Madeira/química , Carbono/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Adsorção
2.
Synth Syst Biotechnol ; 8(4): 578-583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706206

RESUMO

Artificial multi-enzyme cascades bear great potential for bioconversion of C1 compounds to value-added chemicals. Over the past decade, massive efforts have been devoted to constructing multi-enzyme cascades to produce glycolic acid, rare functional sugars and even starch from C1 compounds. However, in contrast to traditional fermentation utilizing C1 compounds with the expectation of competitive economic performance in future industrialization, multi-enzyme cascades systems in the proof-of-concept phase are facing the challenges of upscaling. Here, we offered an overview of the recent advances in the construction of in vitro multi-enzyme cascades and whole-cell transformation using C1 compounds as substrate. In addition, the existing challenges and possible solutions were also discussed aiming to combine the strengths of in vitro and in vivo multi-enzyme cascades systems for upscaling.

3.
Front Plant Sci ; 14: 1151131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615025

RESUMO

As the most suitable potential clean energy power generation technology, biophotovoltaics (BPV) not only inherits the advantages of traditional photovoltaics, such as safety, reliability and no noise, but also solves the disadvantages of high pollution and high energy consumption in the manufacturing process, providing new functions of self-repair and natural degradation. The basic idea of BPV is to collect light energy and generate electric energy by using photosynthetic autotrophs or their parts, and the core is how these biological materials can quickly and low-loss transfer electrons to the anode through mediators after absorbing light energy and generating electrons. In this mini-review, we summarized the biological materials widely used in BPV at present, mainly cyanobacteria, green algae, biological combinations (using multiple microorganisms in the same BPV system) and isolated products (purified thylakoids, chloroplasts, photosystem I, photosystem II), introduced how researchers overcome the shortcomings of low photocurrent output of BPV, pointed out the limitations that affected the development of BPV' biological materials, and put forward reasonable assumptions accordingly.

4.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2430-2448, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37401602

RESUMO

Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.


Assuntos
Engenharia Metabólica , Metanol , Humanos , Metanol/metabolismo , Redes e Vias Metabólicas , Biotransformação
5.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298624

RESUMO

As the focus of architecture, furniture, and other fields, wood has attracted extensive attention for its many advantages, such as environmental friendliness and excellent mechanical properties. Inspired by the wetting model of natural lotus leaves, researchers prepared superhydrophobic coatings with strong mechanical properties and good durability on the modified wood surface. The prepared superhydrophobic coating has achieved functions such as oil-water separation and self-cleaning. At present, some methods such as the sol-gel method, the etching method, graft copolymerization, and the layer-by-layer self-assembly method can be used to prepare superhydrophobic surfaces, which are widely used in biology, the textile industry, national defense, the military industry, and many other fields. However, most methods for preparing superhydrophobic coatings on wood surfaces are limited by reaction conditions and process control, with low coating preparation efficiency and insufficiently fine nanostructures. The sol-gel process is suitable for large-scale industrial production due to its simple preparation method, easy process control, and low cost. In this paper, the research progress on wood superhydrophobic coatings is summarized. Taking the sol-gel method with silicide as an example, the preparation methods of superhydrophobic coatings on wood surfaces under different acid-base catalysis processes are discussed in detail. The latest progress in the preparation of superhydrophobic coatings by the sol-gel method at home and abroad is reviewed, and the future development of superhydrophobic surfaces is prospected.


Assuntos
Indústrias , Madeira , Catálise , Nanopartículas em Multicamadas , Molhabilidade
6.
Front Plant Sci ; 14: 1154535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089635

RESUMO

Purple corn (Zea mays L.) is a special variety of corn, rich in a large amount of anthocyanins and other functional phytochemicals, and has always ranked high in the economic benefits of the corn industry. However, most studies on the stability of agronomic traits and the interaction between genotype and environment in cereal crops focus on yield. In order to further study the accumulation and stability of special anthocyanins in the growth process of purple corn, this review starts with the elucidation of anthocyanins in purple corn, the biosynthesis process and the gene regulation mechanism behind them, points out the influence of anthocyanin metabolism on anthocyanin metabolism, and introduces the influence of environmental factors on anthocyanin accumulation in detail, so as to promote the multi-field production of purple corn, encourage the development of color corn industry and provide new opportunities for corn breeders and growers.

7.
ACS Appl Mater Interfaces ; 14(49): 54662-54669, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459617

RESUMO

Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.

8.
Front Bioeng Biotechnol ; 10: 1033514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324886

RESUMO

Nature is the source of human design inspiration. In order to adapt to the environment better, creatures in nature have formed various morphological structures during billions of years of evolution, among which the superhydrophobic characteristics of some animal and plant surface structures have attracted wide attention. At present, the preparation methods of bionic superhydrophobic surface based on the microstructure of animal and plant body surface include vapor deposition, etching modification, sol-gel method, template method, electrostatic spinning method and electrostatic spraying method, etc., which have been used in medical care, military industry, shipping, textile and other fields. Based on nature, this paper expounds the development history of superhydrophobic principle, summarizes the structure and wettability of superhydrophobic surfaces in nature, and introduces the characteristics differences and applications of different superhydrophobic surfaces in detail. Finally, the challenge of bionic superhydrophobic surface is discussed, and the future development direction of this field is prospected.

9.
Synth Syst Biotechnol ; 7(4): 1183-1184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36262715

RESUMO

Methanol is an attractive C1 feedstock with high abundance and low cost in bio-manufacturing. However, the metabolic construction of cell factories to utilize methanol for chemicals production remains a challenge due to the toxic intermediates and complicated metabolic pathways. The group of Zhou rescued methylotrophic yeast from cell death and achieved high-level production of free fatty acids from methanol through a combination of adaptive laboratory evolution, rational metabolic engineering and multi-omics analysis.

10.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956687

RESUMO

The polyethylene terephthalate (PET) beverage bottle is one of the most common beverage packages in the world, but the bottom of the PET bottle tends to crack due to excessive stress. In this paper, through numerical simulation and finite element analysis, the mechanical properties of four typical geometric models of bottle bottom are studied, and it is determined that "claw flap bottle bottom (CF-bottom)" has the best structure. Then, the shapes of four bottle bottom structures are fine-tuned by using the automatic optimization method. Under the premise of the same material quality, the surface maximum principal stress, the overall maximum principal stress, and the total elastic strain energy of the bottle bottom are reduced by 46.39-71.81%, 38.16-71.50%, and 38.56-61.38%, respectively, while the deformation displacement is also reduced by 0.63 mm-3.43 mm. In contrast to other papers, this paper dispenses with the manual adjustment of various variables, instead adopting automatic shape optimization to obtain a more accurate model. The percentage of maximum principal stress reduction is remarkable, which provides a feasible theoretical guidance for the structural optimization of PET bottle bottom in the production process.

11.
Front Bioeng Biotechnol ; 10: 958095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992341

RESUMO

As an emerging fringe science, bionics integrates the understanding of nature, imitation of nature, and surpassing nature in one aspect, and it organically combines the synergistic complementarity of function and structure-function integrated materials which is of great scientific interest. By imitating the microstructure of a natural biological surface, the bionic superhydrophobic surface prepared by human beings has the properties of self-cleaning, anti-icing, water collection, anti-corrosion and oil-water separation, and the preparation research methods are increasing. The preparation methods of superhydrophobic surface include vapor deposition, etching modification, sol-gel, template, electrostatic spinning, and electrostatic spraying, which can be applied to fields such as medical care, military industry, ship industry, and textile. The etching modification method can directly modify the substrate, so there is no need to worry about the adhesion between the coating and the substrate. The most obvious advantage of this method is that the obtained superhydrophobic surface is integrated with the substrate and has good stability and corrosion resistance. In this article, the different preparation methods of bionic superhydrophobic materials were summarized, especially the etching modification methods, we discussed the detailed classification, advantages, and disadvantages of these methods, and the future development direction of the field was prospected.

12.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015621

RESUMO

Compared with other materials, polyethylene terephthalate (PET) has high transparency, excellent physical and mechanical properties in a wide temperature range and good hygiene and safety, so it is widely used in the packaging industry, especially in the packaging of beverages and foods. The optimization of PET bottles is mainly reflected in three aspects: material optimization, structure optimization and process optimization, among which there is much research on material optimization and process optimization, but there is no complete overview on structure optimization. A summary of structural optimization is necessary. Aiming at structural optimization, the finite element method is a useful supplement to the beverage packaging industry. By combining the computer-aided design technology and using finite element software for finite element simulation, researchers can replace the experimental test in the pre-research design stage, predict the effect and save cost. This review summarizes the development of PET bottles for beverage packaging, summarizes various optimization methods for preventing stress cracking in beverage packaging, and especially focuses on comparing and evaluating the effects of several optimization methods for packaging structure. Finally, the future development of all kinds of optimization based on structural optimization in the field of beverage packaging is comprehensively discussed, including personalized design, the combination of various methods and the introduction of actual impact factor calculation.

13.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890620

RESUMO

PET bottlesare often used as airtight containers for filling carbonated drinks. Because carbonated drinks contain large volumes of CO2 gas, the container needs to bear a tremendous pressure from the inside of the bottle.If the stress exceeds the bearing limit, the material will show the phenomenon of local cracking and liquid overflow.For the structural design, the method of manual adjustment before automatic adjustment was adopted. First, through manual optimization, the initial optimal parameter combination was as follows:the inner diameter of the bottle bottom was 17 mm, the dip angle of the valley bottom was 81°, the deepest part of the valley bottom was 25 mm, and the outer diameter was 27 mm. Comsol software was used for automatic optimization. Compared with the original bottle bottom, the total maximum principal stress and total elastic strain energy in the bottle bottom after manual-automatic double optimization decreased by 69.4% and 40.0%, respectively, and the displacement caused by deformation decreased by 0.60 mm (74.1%). The extremely high reduction ratio was caused by manual-automatic double optimization.

14.
Comput Intell Neurosci ; 2022: 6081680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38025495

RESUMO

Accurate monitoring of fire and smoke plays an irreplaceable role in preventing fires and safeguarding the safety of citizens' lives and property. The network structure of YOLOv5 is simple, but using convolution to extract features will lead to some problems such as limited receptive field, poor feature extraction ability, and insufficient feature integration. In view of the current defects of YOLOv5 target detection algorithm, a new algorithm model named Swin-YOLOv5 was proposed in this work. Swin transformation mechanism was introduced into YOLOv5 network, which enhanced the receptive field and feature extraction ability of the model without changing the depth of the model. In order to enrich the feature map splicing method of weighted Concat and enhance the feature fusion ability of model pairs, the feature splicing method of three output heads of feature fusion layer network was improved. The feature fusion module was further modified, and the weighted feature splicing method was introduced to improve the network feature fusion ability. Experiments showed that, compared with the original algorithm, the rising rate of mAP@0.5 (mean average precision, IoU=0.5) of the improved algorithm was 0.7%, the mAP@0.5:0.95 was increased by 4.5%, and the target detection speed with high accuracy was accelerated by 1.8 FPS (frames per second) under the same experimental dataset. The improved algorithm could more accurately detect the targets that were not detected or detected inaccurately by the original algorithm, which embodied the adaptability of real scene detection and had practical significance. This work provided an opportunity for the application of fire-smoke detection in forest and indoor scenes and also developed a feasible idea for feature extraction and fusion of YOLOv5.


Assuntos
Incêndios , Fumaça , Fumaça/efeitos adversos , Algoritmos
15.
Adv Biochem Eng Biotechnol ; 180: 149-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34545421

RESUMO

As an important building block in the chemical industry, methanol has become an attractive substrate in biorefinery owing to its abundance and low cost. With the development of synthetic biology, metabolic engineering of non-methylotrophy to construct synthetic methylotrophy has drawn increased attention. As for the metabolic construction of methanol assimilation pathway in some industrial hosts, several artificial methanol assimilation pathways have recently been designed and constructed based on the computer-aided design. Particularly, these artificial methanol assimilation pathways possess advantages of shorter reaction steps, stronger driving forces, and independence on oxygen. Accordingly, this chapter reviewed strategies of constructing synthetic methylotrophs, including introducing methanol metabolic modules derived from natural methylotrophs and designing artificial methanol assimilation pathways. Future challenges and prospects were also discussed.


Assuntos
Engenharia Metabólica , Metanol , Metanol/metabolismo , Biologia Sintética
16.
Bioresour Bioprocess ; 9(1): 62, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38647636

RESUMO

Synthetic biology has boosted the rapid development on using non-methylotrophy as chassis for value added chemicals production from one-carbon feedstocks, such as methanol and formic acid. The one-carbon dissimilation pathway can provide more NADH than monosaccharides including glucose, which is conducive for reductive chemicals production, such as succinic acid. In this study, the one-carbon dissimilation pathway was introduced in E. coli Suc260 to enhance the succinic acid production capability. Through the rational construction of methanol dissimilation pathway, the succinic acid yield was increased from 0.91 to 0.95 g/g with methanol and sodium formate as auxiliary substrates in anaerobic fed-batch fermentation. Furthermore, the metabolic flux of by-product pyruvate was redirected to succinic acid together with the CO2 fixation. Finally, through the immobilization on a specially designed glycosylated membrane, E. coli cells are more resistant to adverse environments, and the final yield of succinic acid was improved to 0.98 g/g. This study proved the feasibility of endowing producers with methanol dissimilation pathway to enhance the production of reductive metabolites.

17.
Biotechnol Bioeng ; 118(1): 357-371, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965690

RESUMO

The application of rational design in reallocating metabolic flux to accumulate desired chemicals is always restricted by the native regulatory network. In this study, recombinant Pichia pastoris was constructed for malic acid production from sole methanol through rational redistribution of metabolic flux. Different malic acid accumulation modules were systematically evaluated and optimized in P. pastoris. The recombinant PP-CM301 could produce 8.55 g/L malic acid from glucose, which showed a 3.45-fold increase compared to the parent strain. To improve the efficiency of site-directed gene knockout, NHEJ-related protein Ku70 was destroyed, whereas leading to the silencing of heterogenous genes. Hence, genes related to by-product generation were deleted via a specially designed FRT/FLP system, which successfully reduced succinic acid and ethanol production. Furthermore, a key node in the methanol assimilation pathway, glucose-6-phosphate isomerase was knocked out to liberate metabolic fluxes trapped in the XuMP cycle, which finally enabled 2.79 g/L malic acid accumulation from sole methanol feeding with nitrogen source optimization. These results will provide guidance and reference for the metabolic engineering of P. pastoris to produce value-added chemicals from methanol.


Assuntos
Malatos/metabolismo , Engenharia Metabólica , Metanol/metabolismo , Microrganismos Geneticamente Modificados , Saccharomycetales , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
18.
Appl Microbiol Biotechnol ; 104(17): 7239-7245, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32656615

RESUMO

Ethyl acetate is one of the short-chain esters and widely used in the food, beverage, and solvent areas. The ethyl acetate production currently proceeds through unsustainable and energy intensive processes, which are based on natural gas and crude oil. Microbial conversion of biomass-derived sugars into ethyl acetate may provide a sustainable alternative. In this review, the perspectives of bio-catalyzing ethanol and acetic acid to ethyl acetate using lipases in vitro was introduced. Besides, the crucial elements for high yield of ethyl acetate in fermentation was expounded. Also, metabolic engineering in yeasts to product ethyl acetate in vivo using alcohol acyl transferases (AAT) was discussed. KEY POINTS: •The accumulation of acetyl-CoA is crucial for synthesizing ethyl acetate in vivo; AAT-mediated metabolic engineering could efficiently improve ethyl acetate production.


Assuntos
Etanol , Engenharia Metabólica , Acetatos , Acetilcoenzima A/metabolismo , Fermentação
19.
3 Biotech ; 9(12): 441, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750039

RESUMO

The draft genome of a wild-type Meyerozyma guilliermondii strain YLG18, which could convert l-phenylalanine (l-phe) to 2-phenylethanol (2-PE) and tolerate high concentration of 2-PE was sequenced and analyzed. 18S rDNA analysis indicated that strain YLG18 is closely related to M. guilliermondii. The assembled draft genome of strain YLG18 is 12.8 Mb, containing 5275 encoded protein sequences with G + C content of 43.75%. Among these annotated genes, two aminotransferases, one phenylpyruvate decarboxylase and two bifunctional alcohol dehydrogenases (adh) play key roles in the achievement of 2-PE production from l-phe via Ehrlich pathway. In addition, membrane protein insertase (YidC), heat shock protein (Hsp90) and chaperons (SGT1) were identified, which may contribute to the increased tolerance to 2-PE.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32047743

RESUMO

Industrial biology plays a crucial role in the fields of medicine, health, food, energy, and so on. However, the lack of efficient genetic engineering tools has restricted the rapid development of industrial biology. Recently, the emergence of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system brought a breakthrough in genome editing technologies due to its high orthogonality, versatility, and efficiency. In this review, we summarized the barriers of CRISPR/Cas9 and corresponding solutions for efficient genetic engineering in industrial microorganisms. In addition, the advances of industrial biology employing the CRISPR/Cas9 system were compared in terms of its application in bacteria, yeast, and filamentous fungi. Furthermore, the cooperation between CRISPR/Cas9 and synthetic biology was discussed to help build complex and programmable gene circuits, which can be used in industrial biotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...