Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591686

RESUMO

Metal-Organic Polymers (MOPs) have attracted growing attention for lithium-ion battery (LIB) applications due to their merits in orderly ionic transportation and robust structure stability in electrochemical reactions. However, they suffer from poor electronic conductivity. In this work, we apply first-principles density functional theory to explore the potential of three one-dimensional (1D) electrically conductive C6H2S4TM (TM = Fe, Co, and Ni) MOPs with the π-d conjugated coordination as anode materials for Li+ ions storage. Our theoretical results reveal that these 1D MOPs possess a superior theoretical capacity of over 748 mA h g-1. In particular, the 1D C6H2S4Ni MOP shows an exceptional theoretical specific capacity of 1110 mA h g-1 based on the three-electron transferring reaction, which significantly outperforms the traditional graphite-based anode material in LIBs. Moreover, the resonant charge transfer between Ni metal and ligand within the 1D C6H2S4Ni MOP reduces the diffusion energy barrier of the Li atoms when they migrate on the surface of the MOP. The ultrahigh theoretical specific capacity of the C6H2S4Ni MOP predicts that it can be a promising anode material for LIBs.

2.
Adv Mater ; : e2313513, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461147

RESUMO

The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx @C). This effect facilitates the formation of high-density O (VO ) and Ni (VNi ) vacancy sites with different charge polarities, specifically FLP-VO -C basic sites and FLP-VNi -C acidic sites. The synergistic interaction between FLP-VO -C and FLP-VNi -C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx @C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx @C/g-C3 N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1 , surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.

3.
Adv Mater ; : e2313456, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377174

RESUMO

All-solid-state lithium metal batteries (LMBs) are currently one of the best candidates for realizing the yearning high-energy-density batteries with high safety. However, even polyethylene oxide (PEO), the most popular polymeric solid-state electrolyte (SSE) with the largest ionic conductivity in the category so far, has significant challenges due to the safety issues of lithium dendrites, and the insufficient ionic conductivity. Herein, molecular sieve (MS) is integrated into the PEO as an inert filler with the liquid metal (LM) as a functional module, forming an "LM-MS-PEO" composite as both SSE with enhanced ionic conductivity, and protection layer against lithium dendrites. As demonstrated by theoretical and experimental investigations, LM released from MS can be uniformly and efficiently distributed in PEO, which could avoid agglomeration, enable the effective blocking of lithium dendrites, and regulate the mass transport of Li ions, thus achieving even deposition of lithium during charge/discharge. Moreover, MS could reduce the crystallinity of PEO, improve lithium-ion conductivity, and reduce operating temperature. Benefiting from the introduction of the functional MS/LM, the LM-MS-PEO electrolyte exhibits fourfold higher lithium ionic conductivity than the pristine PEO at 40 °C, while the as-assembled all-solid-state LMBs have four to five times longer stable cycle life.

4.
Small ; : e2307900, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334199

RESUMO

As a crucial component responsible for the oxygen reduction reaction (ORR), cobalt-rich perovskite-type cathode materials have been extensively investigated in protonic ceramic fuel cell (PCFC). However, their widespread application at a commercial scale is considerably hindered by the high cost and inadequate stability. In response to these weaknesses, the study presents a novel cobalt-free perovskite oxide, Ba0.95 La0.05 (Fe0.8 Zn0.2 )0.95 O3-δ (BLFZ0.95), with the triple-conducting (H+ |O2- |e- ) property as an active and robust air electrode for PCFC. The B-site deficiency state contributes significantly to the optimization of crystal and electronic structure, as well as the increase in oxygen vacancy concentration, thus in turn favoring the catalytic capacity. As a result, the as-obtained BLFZ0.95 electrode demonstrates exceptional electrochemical performance at 700 °C, representing extremely low area-specific resistance of 0.04 Ω cm2 in humid air (3 vol.% H2 O), extraordinarily high peak power density of 1114 mW cm-2 , and improved resistance against CO2 poisoning. Furthermore, the outstanding long-term durability is achieved without visible deterioration in both symmetrical and single cell modes. This study presents a simple but crucial case for rational design of cobalt-free perovskite cathode materials with appreciable performance via B-site deficiency regulation.

5.
Angew Chem Int Ed Engl ; 63(5): e202315087, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087471

RESUMO

The reaction rate bottleneck during interconversion between insulating S8 (S) and Li2 S fundamentally leads to incomplete conversion and restricted lifespan of Li-S battery, especially under high S loading and lean electrolyte conditions. Herein, we demonstrate a new catalytic chemistry: soluble semiquinone, 2-tertbutyl-semianthraquinone lithium (Li+ TBAQ⋅- ), as both e- /Li+ donor and acceptor for simultaneous S reduction and Li2 S oxidation. The efficient activation of S and Li2 S by Li+ TBAQ⋅- in the initial discharging/charging state maximizes the amount of soluble lithium polysulfide, thereby substantially improve the rate of solid-liquid-solid reaction by promoting long-range electron transfer. With in situ Raman spectra and theoretical calculations, we reveal that the activation of S/Li2 S is the rate-limiting step for effective S utilization under high S loading and low E/S ratio. Beyond that, the S activation ratio is firstly proposed as an accurate indicator to quantitatively evaluate the reaction rate. As a result, the Li-S batteries with Li+ TBAQ⋅- deliver superior cycling performance and over 5 times higher S utilization ratio at high S loading of 7.0 mg cm-2 and a current rate of 1 C compared to those without Li+ TBAQ⋅- . We hope this study contributes to the fundamental understanding of S redox chemical and inspires the design of efficient catalysis for advanced Li-S batteries.

6.
Adv Mater ; 36(6): e2305748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849022

RESUMO

The interfacial compatibility between cathodes and sulfide solid-electrolytes (SEs) is a critical limiting factor of electrochemical performance in all-solid-state lithium-ion batteries (ASSLBs). This work presents a gas-solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li2 CO3 , onto LiCoO2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g-1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g-1 at 2 C), and exceptional stability in high-loading cathode (28.97 and 23.45 mg cm-2 ) within ASSLBs. Furthermore, the SRL CoO/Li2 CO3 enhances the interfacial stability between LCO and Li10 GeP2 S12 as well as Li3 PS4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi0.8 Co0.1 Mn0.1 O2 cathodes and other reducing gases such as H2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.

7.
Angew Chem Int Ed Engl ; 62(49): e202311460, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37707882

RESUMO

Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.

8.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37420527

RESUMO

Infrared images have been widely used in many research areas, such as target detection and scene monitoring. Therefore, the copyright protection of infrared images is very important. In order to accomplish the goal of image-copyright protection, a large number of image-steganography algorithms have been studied in the last two decades. Most of the existing image-steganography algorithms hide information based on the prediction error of pixels. Consequently, reducing the prediction error of pixels is very important for steganography algorithms. In this paper, we propose a novel framework SSCNNP: a Convolutional Neural-Network Predictor (CNNP) based on Smooth-Wavelet Transform (SWT) and Squeeze-Excitation (SE) attention for infrared image prediction, which combines Convolutional Neural Network (CNN) with SWT. Firstly, the Super-Resolution Convolutional Neural Network (SRCNN) and SWT are used for preprocessing half of the input infrared image. Then, CNNP is applied to predict the other half of the infrared image. To improve the prediction accuracy of CNNP, an attention mechanism is added to the proposed model. The experimental results demonstrate that the proposed algorithm reduces the prediction error of the pixels due to full utilization of the features around the pixel in both the spatial and the frequency domain. Moreover, the proposed model does not require either expensive equipment or a large amount of storage space during the training process. Experimental results show that the proposed algorithm had good performances in terms of imperceptibility and watermarking capacity compared with advanced steganography algorithms. The proposed algorithm improved the PSNR by 0.17 on average with the same watermark capacity.


Assuntos
Redes Neurais de Computação , Análise de Ondaletas , Algoritmos , Registros , Segurança Computacional
9.
Nat Commun ; 14(1): 3634, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337012

RESUMO

Electrochemical conversion of nitrate to ammonia offers an efficient approach to reducing nitrate pollutants and a potential technology for low-temperature and low-pressure ammonia synthesis. However, the process is limited by multiple competing reactions and NO3- adsorption on cathode surfaces. Here, we report a Fe/Cu diatomic catalyst on holey nitrogen-doped graphene which exhibits high catalytic activities and selectivity for ammonia production. The catalyst enables a maximum ammonia Faradaic efficiency of 92.51% (-0.3 V(RHE)) and a high NH3 yield rate of 1.08 mmol h-1 mg-1 (at - 0.5 V(RHE)). Computational and theoretical analysis reveals that a relatively strong interaction between NO3- and Fe/Cu promotes the adsorption and discharge of NO3- anions. Nitrogen-oxygen bonds are also shown to be weakened due to the existence of hetero-atomic dual sites which lowers the overall reaction barriers. The dual-site and hetero-atom strategy in this work provides a flexible design for further catalyst development and expands the electrocatalytic techniques for nitrate reduction and ammonia synthesis.

10.
Adv Sci (Weinh) ; 10(24): e2301056, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37334882

RESUMO

High energy and power density alkali-ion (i.e., Li+ , Na+ , and K+ ) batteries (AIBs), especially lithium-ion batteries (LIBs), are being ubiquitously used for both large- and small-scale energy storage, and powering electric vehicles and electronics. However, the increasing LIB-triggered fires due to thermal runaways have continued to cause significant injuries and casualties as well as enormous economic losses. For this reason, to date, great efforts have been made to create reliable fire-safe AIBs through advanced materials design, thermal management, and fire safety characterization. In this review, the recent progress is highlighted in the battery design for better thermal stability and electrochemical performance, and state-of-the-art fire safety evaluation methods. The key challenges are also presented associated with the existing materials design, thermal management, and fire safety evaluation of AIBs. Future research opportunities are also proposed for the creation of next-generation fire-safe batteries to ensure their reliability in practical applications.

11.
Nanomicro Lett ; 15(1): 122, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160560

RESUMO

An environmentally benign, sustainable, and cost-effective supply of H2O2 as a rapidly expanding consumption raw material is highly desired for chemical industries, medical treatment, and household disinfection. The electrocatalytic production route via electrochemical oxygen reduction reaction (ORR) offers a sustainable avenue for the on-site production of H2O2 from O2 and H2O. The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron (2e-) ORR. In recent years, tremendous progress has been achieved in designing efficient, robust, and cost-effective catalyst materials, including noble metals and their alloys, metal-free carbon-based materials, single-atom catalysts, and molecular catalysts. Meanwhile, innovative cell designs have significantly advanced electrochemical applications at the industrial level. This review summarizes fundamental basics and recent advances in H2O2 production via 2e--ORR, including catalyst design, mechanistic explorations, theoretical computations, experimental evaluations, and electrochemical cell designs. Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H2O2 via the electrochemical route.

12.
Adv Mater ; 35(26): e2300861, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990963

RESUMO

The practical viability of high-energy-density lithium-sulfur (Li-S) batteries stipulates the use of a high-loading cathode and lean electrolyte. However, under such harsh conditions, the liquid-solid sulfur redox reaction is much retarded due to the poor sulfur and polysulfides utilization, leading to low capacity and fast fading. Herein, a self-assembled macrocyclic Cu(II) complex (CuL) is designed as an effective catalyst to homogenize and maximize the liquid-involving reaction. The Cu(II) ion coordinated with four N atoms features a planar d sp 2 ${\mathrm{d}}_{{\mathrm{sp}}^{2}}$ hybridization, showing a strong bonding affinity toward lithium polysulfides (LiPSs) along the d z 2 ${\mathrm{d}}_{{z}^{2}}$ orbital via steric effects. Such a structure not only lowers the energy barrier of the liquid-solid conversion (Li2 S4 to Li2 S2 ) but also guides a 3D deposition of Li2 S2 /Li2 S. As such, with a 1 wt% electrolyte additive of CuL, a high initial capacity of 925 mAh g-1 and areal capacity of 9.62 mAh cm-2 with a low decay of 0.3%/cycle can be achieved under a high sulfur loading of 10.4 mg cm-2 and low electrolyte/sulfur ratio of 6 µL mgs -1 . This work is expected to inspire the design of homogenous catalysts and accelerate the uptake of high-energy-density Li-S batteries.

13.
Adv Mater ; 35(12): e2210658, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36641734

RESUMO

CO2 utilization and conversion are of great importance in alleviating the rising CO2 concentration in the atmosphere. Here, a single-atom catalyst (SAC) is reported for electrochemical CO2 utilization in both aqueous and aprotic electrolytes. Specifically, atomically dispersed Mn-N4 sites are embedded in bowl-like mesoporous carbon particles with the functionalization of epoxy groups in the second coordination spheres. Theoretical calculations suggest that the epoxy groups near the Mn-N4 site adjust the electronic structure of the catalyst with reduced reaction energy barriers for the electrocatalytic reduction of CO2 to CO. The resultant Mn-single-atom carbon with N and O doped catalyst (MCs-(N,O)) exhibits extraordinary electrocatalytic performance with a high CO faradaic efficiency of 94.5%, a high CO current density of 13.7 mA cm-2 , and a low overpotential of 0.44 V in the aqueous environment. Meanwhile, as a cathode catalyst for aprotic Li-CO2 batteries, the MCs-(N,O) with well-regulated active sites and unique mesoporous bowl-like morphology optimizes the nucleation behavior of discharge products. MCs-(N,O)-based batteries deliver a low overpotential and excellent cyclic stability of 1000 h. The findings in this work provide a new avenue to design and fabricate SACs for various electrochemical CO2 utilization systems.

14.
Adv Mater ; 35(5): e2208573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460018

RESUMO

Interest in defect engineering for lithium-ion battery (LIB) materials is sparked by its ability to tailor electrical conductivity and introduce extra active sites for electrochemical reactions. However, harvesting excessive intrinsic defects in the bulk of the electrodes rather than near their surface remains a long-standing challenge. Here, a versatile strategy of quenching is demonstrated, which is exercised in lithium titanate (Li4 Ti5 O12 , LTO), a renowned anode for LIBs, to achieve off-stoichiometry in the interior region. In situ synchrotron analysis and atomic-resolution microscopy reveal the enriched oxygen vacancies and cation redistribution after ice-water quenching, which can facilitate the native unextractable Li ions to participate in reversible cycling. The fabricated LTO anode delivers a sustained capacity of 202 mAh g-1 in the 1.0-2.5 V range with excellent rate capability and overcomes the poor cycling stability seen in conventional defective electrodes. The feasibility of tuning the degree of structural defectiveness via quenching agents is also proven, which can open up an intriguing avenue of research to harness the intrinsic defects for improving the energy density of rechargeable batteries.

15.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298196

RESUMO

Deep learning has become an essential technique in image steganography. Most of the current deep-learning-based steganographic methods process digital images in the spatial domain. There are problems such as limited embedding capacity and unsatisfactory visual quality. To improve capacity-distortion performance, we develop a steganographic method from the frequency-domain perspective. We propose a module called the adaptive frequency-domain channel attention network (AFcaNet), which makes full use of the frequency features in each channel by a fine-grained manner of assigning weights. We apply this module to the state-of-the-art SteganoGAN, forming an Adaptive Frequency High-capacity Steganography Generative Adversarial Network (AFHS-GAN). The proposed neural network enhances the ability of high-dimensional feature extraction through overlaying densely connected convolutional blocks. In addition to this, a low-frequency loss function is introduced as an evaluation metric to guide the training of the network and thus reduces the modification of low-frequency regions of the image. Experimental results on the Div2K dataset show that our method has a better generalization capability compared to the SteganoGAN, with substantial improvement in both embedding capacity and stego-image quality. Furthermore, the embedding distribution of our method in the DCT domain is more similar to that of the traditional method, which is consistent with the prior knowledge of image steganography.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
16.
Angew Chem Int Ed Engl ; 61(51): e202213296, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36280592

RESUMO

Not only high efficiency but also high selectivity of the electrocatalysts is crucial for high-performance, low-cost, and sustainable energy storage applications. Herein, we systematically investigate the edge effect of carbon-supported single-atom catalysts (SACs) on oxygen reduction reaction (ORR) pathways (two-electron (2 e- ) or four-electron (4 e- )) and conclude that the 2 e- -ORR proceeding over the edge-hosted atomic Co-N4 sites is more favorable than the basal-plane-hosted ones. As such, we have successfully synthesized and tuned Co-SACs with different edge-to-bulk ratios. The as-prepared edge-rich Co-N/HPC catalyst exhibits excellent 2 e- -ORR performance with a remarkable selectivity of ≈95 % in a wide potential range. Furthermore, we also find that oxygen functional groups could saturate the graphitic carbon edges under the ORR operation and further promote electrocatalytic performance. These findings on the structure-property relationship in SACs offer a promising direction for large-scale and low-cost electrochemical H2 O2 production via the 2 e- -ORR.

17.
Chem Soc Rev ; 51(18): 8045-8101, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36047454

RESUMO

Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Íons , Estudos Retrospectivos
18.
ACS Nano ; 16(9): 14600-14610, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067416

RESUMO

Aqueous Zn-ion batteries (AZIBs), being safe, inexpensive, and pollution-free, are a promising candidate for future large-scale sustainable energy storage. However, in a conventional AZIBs setup, the Zn metal anode suffers oxidative corrosion, side reactions with electrolytes, disordered dendrite growth during operation, and consequently low efficiency and short lifespan. In this work, we discover that purging CO2 gas into the electrolyte could address these issues by eliminating dissolved O2, inhibiting side reactions by buffering the local pH change, and preventing dendrite growth by inducing the in situ formation of a ZnCO3 solid electrolyte interphase layer. Moreover, the CO2-purged electrolyte could enable a highly reversible plating/stripping behavior with a high Coulombic efficiency of 99.97% and an ultralong lifespan of 32,000 cycles (1600 h) even under an ultrahigh current density of 40 mA cm-2. Consequently, the CO2-purged symmetrical cells deliver long cycling stability at a high depth of discharge of 57%, while the CO2-purged Zn/V2O5 full cells exhibit outstanding capacity retention of 66% after 1000 cycles at a high current density of 5 A g-1. Our strategy, the simple introduction of CO2 gas into the electrolyte, could effectively mediate the zinc anode's critical issues and provide a scalable and cost-effective pathway for the commercialization of AZIBs.

19.
Acc Chem Res ; 55(15): 2088-2102, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35866547

RESUMO

ConspectusSilicon-based anode materials have become a research hot spot as the most promising candidates for next-generation high-capacity lithium-ion batteries. However, the irreversible degradation of the conductive network in the anode and the resultant dramatic capacity loss have become two ultimate challenges that stem from inherent characteristics of the Si-based materials, including poor conductivity and massive volume changes (up to 300%) during cycling. Apart from optimization of the active materials, one effective way to stabilize high-capacity Si-based anodes is by designing polymeric binders to reinforce the conductive networks during repeated charge and discharge processes. As an inactive component in the electrode, the binder not only holds other components (e.g., active materials, conductive agents, and current collectors) together to maintain the mechanical integrity of the electrode but also serves as a thickener to facilitate the homogeneous distribution of particles. Therefore, binders play a key role in Si-based anodes by maintaining the integrity of conductive networks in the electrode.In this Account, on the basis of the extensive binder-related work on Si-based anodes since the 2000s, efforts made on maintaining the conductive network can be categorized into two main strategies: (1) stabilization of the primary conductive network (which generally refers to conductive agents) by enhancing the binding strength and resilience of the binding between electrode components (i.e., Si particles, conducting agents, and current collectors) via various interactions (e.g., dipolar interactions and covalent bonds) and (2) construction of the secondary conductive network by employing conductive binders, which serve as a molecular-level conductive layer on active materials. In this sense, functional groups in binders can be divided into two categories: mechanical structural units and conductive structural units. On the one hand, functional groups with strong polarities (e.g., -OH, -COOH, -NH2, and -CONH-) generally serve as binding structural units because of their bonding tendencies; on the other hand, exhibiting high electronic conductivity, conjugated functional groups (e.g., -C4H4O2S-, -C16H9, -C13H8-, and -C12H8N-) are commonly found in conductive binders. Through establishing the correlation between structural units and their corresponding properties, we systematically summarize the optimization strategies and design principles of binders to achieve a robust conductive network in Si-based anodes. In addition, integration of desirable mechanical properties and high conductivity into the binder in order to achieve a multidimensionally stable conductive network is proposed. Through an insightful retrospective and prospective on binders, a key electrode component, we hope to provide a fresh perspective on performance optimization of Si-based anodes.

20.
Angew Chem Int Ed Engl ; 61(41): e202206152, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35768337

RESUMO

Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3 C2 Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator's power density is 8.6 W m-2 and up to 17.8 W m-2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.


Assuntos
Salinidade , Titânio , Íons , Osmose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...