Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1380136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633744

RESUMO

Osteoporosis, arthritis, and fractures are examples of orthopedic illnesses that not only significantly impair patients' quality of life but also complicate and raise the expense of therapy. It has been discovered in recent years that the pathophysiology of orthopedic disorders is significantly influenced by the microbiota. By employing machine learning and deep learning techniques to conduct a thorough analysis of the disease-causing microbiome, we can enhance our comprehension of the pathophysiology of many illnesses and expedite the creation of novel treatment approaches. Today's science is undergoing a revolution because to the introduction of machine learning and deep learning technologies, and the field of biomedical research is no exception. The genesis, course, and management of orthopedic disorders are significantly influenced by pathogenic microbes. Orthopedic infection diagnosis and treatment are made more difficult by the lengthy and imprecise nature of traditional microbial detection and characterization techniques. These cutting-edge analytical techniques are offering previously unheard-of insights into the intricate relationships between orthopedic health and pathogenic microbes, opening up previously unimaginable possibilities for illness diagnosis, treatment, and prevention. The goal of biomedical research has always been to improve diagnostic and treatment methods while also gaining a deeper knowledge of the processes behind the onset and development of disease. Although traditional biomedical research methodologies have demonstrated certain limits throughout time, they nevertheless rely heavily on experimental data and expertise. This is the area in which deep learning and machine learning approaches excel. The advancements in machine learning (ML) and deep learning (DL) methodologies have enabled us to examine vast quantities of data and unveil intricate connections between microorganisms and orthopedic disorders. The importance of ML and DL in detecting, categorizing, and forecasting harmful microorganisms in orthopedic infectious illnesses is reviewed in this work.


Assuntos
Aprendizado Profundo , Microbiota , Doenças Musculoesqueléticas , Humanos , Qualidade de Vida , Aprendizado de Máquina
2.
J Neurosurg ; : 1-11, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608304

RESUMO

OBJECTIVE: Circulating tumor cell (CTC) detection is a promising noninvasive technique that can be used to diagnose cancer, monitor progression, and predict prognosis. In this study, the authors aimed to investigate the clinical utility of CTCs in the management of diffuse glioma. METHODS: Sixty-three patients with newly diagnosed diffuse glioma were included in this multicenter clinical cohort. The authors used a platform based on isolation by size of epithelial tumor cells (ISET) to detect and analyze CTCs and circulating tumor microemboli (CTMs) in the peripheral blood of patients both before and after surgery. Least absolute shrinkage and selector operation (LASSO) and Cox regression analyses were used to verify whether CTCs and CTMs are independent prognostic factors for diffuse glioma. RESULTS: CTC levels were closely related to the degree of malignancy, WHO grade, and pathological subtypes. Receiver operating characteristic curve analysis revealed that a high CTC level was a predictor for glioblastoma. The results also showed that CTMs originate from the parental tumor rather than from the circulation and are an independent prognostic factor for diffuse glioma. The postoperative CTC level is related to the peripheral immune system and patient survival. Cox regression analysis showed that postoperative CTC levels and CTM status are independent prognostic factors for diffuse glioma, and CTC- and CTM-based survival models had high accuracy in internal validation. CONCLUSIONS: The authors revealed a correlation between CTCs and clinical characteristics and demonstrated that CTCs and CTMs are independent predictors for the diagnosis and prognosis of diffuse glioma. Their CTC- and CTM-based survival models can enable clinicians to evaluate patients' response to surgery as well as their outcomes.

3.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442272

RESUMO

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular , Doenças Neuroinflamatórias , Drenagem
4.
J Pineal Res ; 76(1): e12925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986632

RESUMO

Stroke is the leading cause of death and disability worldwide. Novel and effective therapies for ischemic stroke are urgently needed. Here, we report that melatonin receptor 1A (MT1) agonist ramelteon is a neuroprotective drug candidate as demonstrated by comprehensive experimental models of ischemic stroke, including a middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia in vivo, organotypic hippocampal slice cultures ex vivo, and cultured neurons in vitro; the neuroprotective effects of ramelteon are diminished in MT1-knockout (KO) mice and MT1-KO cultured neurons. For the first time, we report that the MT1 receptor is significantly depleted in the brain of MCAO mice, and ramelteon treatment significantly recovers the brain MT1 losses in MCAO mice, which is further explained by the Connectivity Map L1000 bioinformatic analysis that shows gene-expression signatures of MCAO mice are negatively connected to melatonin receptor agonist like Ramelteon. We demonstrate that ramelteon improves the cerebral blood flow signals in ischemic stroke that is potentially mediated, at least, partly by mechanisms of activating endothelial nitric oxide synthase. Our results also show that the neuroprotection of ramelteon counteracts reactive oxygen species-induced oxidative stress and activates the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Ramelteon inhibits the mitochondrial and autophagic death pathways in MCAO mice and cultured neurons, consistent with gene set enrichment analysis from a bioinformatics perspective angle. Our data suggest that Ramelteon is a potential neuroprotective drug candidate, and MT1 is the neuroprotective target for ischemic stroke, which provides new insights into stroke therapy. MT1-KO mice and cultured neurons may provide animal and cellular models of accelerated ischemic damage and neuronal cell death.


Assuntos
Isquemia Encefálica , Indenos , AVC Isquêmico , Melatonina , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Camundongos , AVC Isquêmico/tratamento farmacológico , Receptor MT1 de Melatonina/agonistas , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , Melatonina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Camundongos Knockout , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
5.
Quant Imaging Med Surg ; 13(12): 8326-8335, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106235

RESUMO

Background: The occurrence rate of distal anterior cerebral artery (DACA) aneurysms is relatively low, primarily due to their deep-seated location, which makes surgical clamping challenging. The objective of this study was to investigate the efficacy and safety of computed tomography (CT) navigation-assisted clipping of DACA aneurysms compared to traditional clipping without navigation. Methods: A retrospective cohort study involving retrospective data collection was performed. The retrospective analysis was conducted on 139 patients with ruptured DACA aneurysms who underwent clipping. From January 2013 to November 2021, 164 patients were retrieved at the Department of Neurosurgery, Renmin Hospital of Wuhan University. The inclusion criteria were patients diagnosed with DACA aneurysms via CT angiography (CTA) or digital subtraction angiography (DSA), those with complete clinical data, and those who underwent craniotomy for aneurysm clipping. Meanwhile, the exclusion criteria were as follows: aneurysm recurrence, traumatic brain injury or surgery history, blood disorders or recent anticoagulant use, and severe organ dysfunction. Data on gender, age, Hunt-Hess grade, Fisher grade, modified Rankin Scale (mRS) score, aneurysm location, hospitalization time, aneurysm found time (the duration from incision to aneurysm discovery), and intraoperative bleeding volume were collected from medical records and neurosurgical databases. Patients were followed up in the clinic or by telephone in May 2022. All patients were divided into a navigation group or a traditional group for statistical analysis. Results: No statistically significant differences were observed in age, sex, Fisher grade, Hunt-Hess grade, hospitalization time, or aneurysm site between the navigation group and traditional group (P>0.05). Intraoperative blood loss was lower in the navigation group than in the traditional group {370 [280-460] vs. 430 [310-610] mL, P=0.045}. Patients in the traditional group had a shorter aneurysm found time than did those in the navigation group {49 [42-53] vs. 79 [63-84] min, P<0.001}. There was no significant difference in the mRS score at hospital discharge (P=0.336) or follow-up (P=0.157) between the two groups. Conclusions: CT neuronavigation-assisted microsurgery for clipping DACA aneurysms may improve surgical accuracy, shorten the time to locate aneurysms, and reduce intraoperative blood loss. Although no significant difference in prognosis was observed, this technique shows promise as a safe and effective alternative to traditional clipping without navigation.

6.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398128

RESUMO

Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract: Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.

7.
Transl Stroke Res ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140808

RESUMO

Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.

8.
Cell Death Dis ; 14(3): 211, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966152

RESUMO

Glioblastoma multiforme (GBM) is the most common and fatal primary malignant central nervous system tumor in adults. Although there are multiple treatments, the median survival of GBM patients is unsatisfactory, which has prompted us to continuously investigate new therapeutic strategies, including new drugs and drug delivery approaches. Ferroptosis, a kind of regulated cell death (RCD), has been shown to be dysregulated in various tumors, including GBM. Fatostatin, a specific inhibitor of sterol regulatory element binding proteins (SREBPs), is involved in lipid and cholesterol synthesis and has antitumor effects in a variety of tumors. However, the effect of fatostatin has not been explored in the field of ferroptosis or GBM. In our study, through transcriptome sequencing, in vivo experiments, and in vitro experiments, we found that fatostatin induces ferroptosis by inhibiting the AKT/mTORC1/GPX4 signaling pathway in glioblastoma. In addition, fatostatin inhibits cell proliferation and the EMT process through the AKT/mTORC1 signaling pathway. We also designed a p28-functionalized PLGA nanoparticle loaded with fatostatin, which could better cross the blood-brain barrier (BBB) and be targeted to GBM. Our research identified the unprecedented effects of fatostatin in GBM and presented a novel drug-targeted delivery vehicle capable of penetrating the BBB in GBM.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico
9.
Front Cardiovasc Med ; 10: 1096662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776247

RESUMO

Background: Serum calcium (Ca), vitamin D (VD), and vitamin K (VK) levels are key determinants of vascular calcification, which itself impacts cardiovascular disease (CVD) risk. The specific relationships between the levels of these different compounds and particular forms of CVD, however, remain to be fully defined. Objective: This study was designed to explore the associations between these serum levels and CVDs with the goal of identifying natural interventions capable of controlling vascular calcification and thereby protecting against CVD pathogenesis, extending the healthy lifespan of at-risk individuals. Methods: Linkage disequilibrium score (LDSC) regression and a two-sample Mendelian randomization (MR) framework were leveraged to systematically examine the causal interplay between these serum levels and nine forms of CVD, as well as longevity through the use of large publically accessible Genome-Wide Association Studies (GWAS) datasets. The optimal concentrations of serum Ca and VD to lower CVD risk were examined through a restrictive cubic spline (RCS) approach. Results: After Bonferroni correction, the positive genetic correlations were observed between serum Ca levels and myocardial infarction (MI) (p = 1.356E-04), as well as coronary artery disease (CAD) (p = 3.601E-04). Negative genetic correlations were detected between levels of VD and CAD (p = 0.035), while elevated VK1 concentrations were causally associated with heart failure (HF) [odds ratios (OR) per 1-standard deviation (SD) increase: 1.044], large artery stroke (LAS) (OR per 1-SD increase: 1.172), and all stroke (AS) (OR per 1-SD increase: 1.041). Higher serum Ca concentrations (OR per 1-SD increase: 0.865) and VD levels (OR per 1-SD increase: 0.777) were causally associated with reduced odds of longevity. These findings remained consistent in sensitivity analyses, and serum Ca and VD concentrations of 2.376 mmol/L and 46.8 nmol/L, respectively, were associated with a lower CVD risk (p < 0.001). Conclusion: Our findings support a genetic correlation between serum Ca and VD and CVD risk, and a causal relationship between VK1 levels and CVD risk. The optimal serum Ca (2.376 mmol/L) and VD levels (46.8 nmol/L) can reduce cardiovascular risk.

10.
Quant Imaging Med Surg ; 13(1): 293-308, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36620177

RESUMO

Background: Moyamoya disease (MMD) is a teratogenic and lethal disease. However, existing studies do not sufficiently indicate the impact factors. Therefore, we investigated the different impact factors on cerebral hemodynamics after revascularization in patients with MMD. Methods: We retrospectively collected the clinical data of 233 adult patients with MMD who underwent revascularization surgery in the Department of Neurosurgery, Renmin Hospital of Wuhan University, from January 2015 to June 2021 for this retrospective cohort study. We analyzed the effects on hemodynamic improvement of age, sex, stroke type, early symptoms, Suzuki stage, history of hypertension, history of diabetes, and history of hyperlipidemia in patients with MMD. We also evaluated the efficacy of different revascularization strategies and we verified the effect of computed tomography perfusion (CTP) in evaluating cerebral hemodynamics. Results: The CTP values demonstrated that δ cerebral blood volume (CBV) values were significantly higher in the combined group [1.01 (0.87-1.75)] relative to those in the indirect group [1.34 (1.01-1.63); P=0.027]. There was no statistical significance in the improvement of clinical symptoms and clinical prognosis between the indirect and combined groups. Patients with MMD with diabetes [δ mean transit time (MTT), 0.49 (0.35-0.70) vs. 0.72 (0.52-0.87); P<0.001] or calcium channel blocker (CCB) [δCBV, 1.46 (1.10-1.83) vs. 1.12 (0.93-1.54); P=0.001] had better cerebral hemodynamics than patients in non-diabetic group or non-CCB group after revascularization. Conclusions: We didn't find differences in clinical outcome between indirect and combined revascularization in patients with MMD. we demonstrated that CTP values can be used as a way to detect postoperative cerebral hemodynamic changes in MMD patients. Interestingly, we found that MMD patients with diabetes or CCB showed better cerebral perfusion after revascularization.

11.
Neuro Oncol ; 25(3): 482-494, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35901838

RESUMO

BACKGROUND: Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS: Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS: At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS: Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Invasividade Neoplásica , Linhagem Celular Tumoral , Modelos Animais de Doenças
12.
Front Psychiatry ; 13: 986389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440394

RESUMO

Background: The number of patients suffering from depression is continuously increasing in China. Demographic characteristics, physical health levels, and individual lifestyles/healthy behaviors are associated with the severity of depression. However, the major risk factor for depression remains unclear. Materials and methods: In this investigation, 16,512 patients were screened using the CHARLS (China Health and Retirement Longitudinal Study) database after being determined to be eligible based on the inclusion criteria. Depressive symptoms were evaluated through the CESD-10 (10-item Center for Epidemiological Studies Depression Scale). Consequently, various models were developed based on potential predictive factors, employing stepwise LR (Logistic Regression)/RF (Random Forests) models to examine the influence and weighting of candidate factors that affect depression. Results: Gender, residential address location, changes in health status following last interview, physical disabilities, chronic pain, childhood health status, ADL (activity of daily living), and social activity were all revealed to be independent risk factors for depression (p < 0.05) in this study. Depression has a synergic effect (across chronic pain and age groups). In comparison to other factors, RF results showed that chronic pain had a stronger impact on depression. Conclusion: This preliminary study reveals that chronic pain is a major risk factor for depression.

13.
Front Oncol ; 12: 967159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059638

RESUMO

WHO 2/3 glioma is a common intracranial tumor that seriously affects the quality of life and survival time of patients. Previous studies have shown that the tricarboxylic acid (TCA) cycle is closely related to the occurrence and development of glioma, while recent studies have shown that cuproptosis, a novel programmed death pathway, is closely related to the inhibition of the TCA cycle. In our study, eight of ten cuproptosis-related genes (CRGs) were found to be differentially expressed between normal and WHO 2/3 glioma tissues. Through the LASSO algorithm, the cuproptosis-associated risk signatures (CARSs) were constructed, which can effectively predict the prognosis of WHO 2/3 glioma patients and are closely related to clinicopathological features. We analyzed the relationship between risk score and immune cell infiltration through Xcell, ssGSEA, TIMER database, and immune checkpoint molecules. In addition, the relationship between risk score and chemotherapeutic drug sensitivity was also investigated. The prognosis-related independent risk factors FDX1 and CDKN2A identified from CARSs are considered potential prognostic biomarkers for WHO 2/3 glioma. The clinical prognosis model based on cuproptosis is expected to provide an effective reference for the diagnosis and treatment of clinical WHO 2/3 glioma patients.

14.
Aging (Albany NY) ; 14(17): 7065-7092, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36084955

RESUMO

BACKGROUND: Aging is characterized by a continuous loss of protein homeostasis. A closer examination of peripheral blood, which houses proteins from nearly all tissues and cells, helped identify several biomarkers and other aspects of aging biology. To further explore the general law of aging and identify key time nodes and associated aging biology, we collected 97 plasma samples from 253 healthy individuals aged 0-100 years without adverse outcomes to conduct nano-Ultra High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (nano-UHPLC-MS/MS) and weighted gene co-expression network analysis (WGCNA). RESULTS: Through biological processes and key biological pathways identified in discrete age group modules, our analyses highlighted a strong correlation between alterations in the immune system and aging process. We also identified hub genes associated with distinct age groups that revealed alterations not only in protein expression but also in signaling cascade. Among them, hub genes from age groups of 0-20 years old and 71-100 years old are mostly involved in infectious diseases and the immune system. In addition, CDC5L and HMGB2 were the key transcription factors (TFs) regulating genes expression in people aged between 51-60 and 71-100 years of age. They were shown to not only be independent but also mutually regulate certain hub gene expressions. CONCLUSIONS: This study reveals that the plasma proteome undergoes a complex alteration over the lifetime of a human. In this process, the immune system is crucial throughout the lifespan of a human being. However, the underlying mechanism(s) regulating differential protein expressions at distinct ages remains to be elucidated.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Biomarcadores , Proteínas de Ciclo Celular , China , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Proteína HMGB2 , Humanos , Proteínas de Ligação a RNA , Fatores de Transcrição
15.
Nanomedicine ; 44: 102581, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811067

RESUMO

Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.


Assuntos
Glioblastoma , Nanopartículas , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Esterases/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ácido Láctico , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Microambiente Tumoral
16.
Med Oncol ; 39(5): 90, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568751

RESUMO

Transmembrane and coiled-coil domains 1 (TMCO1) is a recently discovered transmembrane protein of endoplasmic reticulum (ER), which plays a critical role in maintaining calcium homeostasis. TMCO1 dysfunction has been proved to be closely related to a variety of human diseases, including glaucoma, deformities, mental retardation and tumorigenesis. However, the role of TMCO1 in gliomas remains unclear. The purpose of this study was to detect the role of TMCO1 in the pathogenesis and progression of gliomas. This study demonstrated that TMCO1 was upregulated in gliomas and its overexpression predicted poor prognosis. We also revealed that the expression of TMCO1 was associated with the World Health Organization (WHO) grade of gliomas. Knockdown of TMCO1 inhibited the proliferation and induced apoptosis of U87 and U251 cells. In addition, TMCO1 induced GBM cell migration and invasion by promoting epithelial-mesenchymal transition (EMT). These date collectively proved the crucial role of TMCO1 as a novel prognostic factor and underlying therapeutic target for glioma patients.


Assuntos
Transição Epitelial-Mesenquimal , Glioma , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos
17.
Ann Transl Med ; 10(6): 306, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433967

RESUMO

Background: To evaluate the effectiveness and safety profile of transarterial embolization in the treatment of brain arteriovenous malformations (bAVMs) within the basal ganglia and thalamus. Methods: A retrospective clinical study was performed on 22 patients with bAVMs localized within the basal ganglia and thalamus who were treated with transarterial embolization (December 2012 and January 2019) in our center. The bAVMs were embolized via the transarterial approach with Onyx or Glubran according to the anatomical structure. A detachable or undetachable microcatheter was used in the procedure according to the length of the feeding artery. The data of these patients were retrospectively analyzed. Results: Among the 22 patients, 9 bAVMs were located in the basal ganglia and 13 were located in the thalamus. Twenty patients presented with hemorrhage (90.9%), leaving 2 patients (9.1%) who had no symptoms. According to the Spetzler-Martin grading classification, 13 bAVMs (59.1%) were grade 3, 7 (31.8%) were grade 4, and 2 (9.1%) were grade 5. Procedure-related complications occurred in only 1 patient (4.5%). No deaths related to the operation occurred. All patients achieved anatomic stabilization and no bleeding was observed in the follow-up. Conclusions: Selective embolization via the transarterial approach is safe and effective for bAVMs originating within the basal ganglia and thalamus. Our results demonstrate a low rate of complications and an elevated degree of anatomical disruption in the endovascular treatment of bAVMs stemming from the basal ganglia and thalamus.

18.
Nat Commun ; 13(1): 2196, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459228

RESUMO

Glioblastoma (GBM) is a deadly disease without effective treatment. Because glioblastoma stem cells (GSCs) contribute to tumor resistance and recurrence, improved treatment of GBM can be achieved by eliminating GSCs through inducing their differentiation. Prior efforts have been focused on studying GSC differentiation towards the astroglial lineage. However, regulation of GSC differentiation towards the neuronal and oligodendroglial lineages is largely unknown. To identify genes that control GSC differentiation to all three lineages, we performed an image-based genome-wide RNAi screen, in combination with single-cell RNA sequencing, and identified ZNF117 as a major regulator of GSC differentiation. Using patient-derived GSC cultures, we show that ZNF117 controls GSC differentiation towards the oligodendroglial lineage via the Notch pathway. We demonstrate that ZNF117 is a promising target for GSC differentiation therapy through targeted delivery of CRISPR/Cas9 gene-editing nanoparticles. Our study suggests a direction to improve GBM treatment through differentiation of GSCs towards various lineages.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo
19.
Bioact Mater ; 16: 57-65, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386312

RESUMO

Stroke is the leading cause of death and disability. Currently, there is no effective pharmacological treatment for this disease, which can be partially attributed to the inability to efficiently deliver therapeutics to the brain. Here we report the development of natural compound-derived nanoparticles (NPs), which function both as a potent therapeutic agent for stroke treatment and as an efficient carrier for drug delivery to the ischemic brain. First, we screened a collection of natural nanomaterials and identified betulinic acid (BA) as one of the most potent antioxidants for stroke treatment. Next, we engineered BA NPs for preferential drug release in acidic ischemic tissue through chemically converting BA to betulinic amine (BAM) and for targeted drug delivery through surface conjugation of AMD3100, a CXCR4 antagonist. The resulting AMD3100-conjugated BAM NPs, or A-BAM NPs, were then assessed as a therapeutic agent for stroke treatment and as a carrier for delivery of NA1, a neuroprotective peptide. We show that intravenous administration of A-BAM NPs effectively improved recovery from stroke and its efficacy was further enhanced when NA1 was encapsulated. Due to their multifunctionality and significant efficacy, we anticipate that A-BAM NPs have the potential to be translated both as a therapeutic agent and as a drug carrier to improve the treatment of stroke.

20.
Cell Rep Phys Sci ; 3(1)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35199059

RESUMO

Despite being effective for many other solid tumors, traditional anti-angiogenic therapy has been shown to be insufficient for the treatment of malignant glioma. Here, we report the development of polyphenol nanoparticles (NPs), which not only inhibit the formation of new vessels but also enable targeted disruption of the existing tumor vasculature. The NPs are synthesized through a combinatory iron-coordination and polymer-stabilization approach, which allows for high drug loading and intrinsic tumor vessel targeting. We study a lead NP consisting of quercetin and find that the NP after intravenous administration preferentially binds to VEGFR2, which is overexpressed in tumor vasculature. We demonstrate that the binding is mediated by quercetin, and the interaction of NPs with VEGFR2 leads to disruption of the existing tumor vasculature and inhibition of new vessel development. As a result, systemic treatment with the NPs effectively inhibits tumor growth and increases drug delivery to tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...