Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 256: 116274, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599074

RESUMO

Exploring the photochemical (PEC) method induced by low-energy light source makes great significance to achieve high stability and accurate analysis. A sensing platform driven by near-infrared (NIR) light was designed by making the biochemically encoded carbon rich plasmonic hybrid (CPH) probe, the peptide@C-Mo2C. The inherent plasmonic effect of C-Mo2C CPH can directly absorb NIR light, thus starting effective electronic-hole pairs separation. Moreover, the photothermal effect of C-Mo2C CPH also promoted the reaction yield of photothermal catalyst reaction on sensing interface to assist the PEC signal amplification. In the presence of target trypsin, it cleaves the peptides, resulting in the release of peptide@C-Mo2C probe from interface, which leads to a relative decrease in PEC signal. More importantly, a self-calibration system consisting of two independent PEC test channels attempted to eliminate the influence of background signal and baseline drift. The test channel was used to specify the recognition target, while the blank channel was used as a reference. Therefore, the signal difference between two channels was recorded, so as to obtain results with less error and higher stability. In this NIR driven PEC sensor, the carbon rich probe with direct and efficient NIR light conversion promoted the sensitivity and a self-calibration system guaranteed the stability which provided innovative thoughts for developing ingenious PEC sensor.


Assuntos
Técnicas Biossensoriais , Carbono , Raios Infravermelhos , Carbono/química , Técnicas Eletroquímicas , Peptídeos/química , Tripsina/química , Limite de Detecção , Desenho de Equipamento
2.
ACS Omega ; 9(6): 6924-6931, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371847

RESUMO

Blockage is often generated in the air nozzle guide duct in a circulating fluidized-bed coal gasifier (CFBG), especially with Zhundong sub-bituminous coal (ZSBC) as the raw material. A typical example is found in one CFBG sample from Xinjiang Yihua Chemical Industry Co, Ltd. The serious blockage can be observed obviously. As so far, it is not clear for the characteristics and generation mechanism of the blockage. For analysis, the blockage can be classified into two parts, wall-layer blockage (WLB) and center-layer blockage (CLB). To inhibit its formation, it is of significance to analyze the composition, surface morphology, and formation mechanism of the two blockages. In our experiments, WLB and CLB were tested by XRF, XRD, FTIR, SEM-EDS, and SEM-mapping methods. Results showed that WLB presents high content of Fe, Cr, and Ni, and Fe mainly existed in the form of metal oxides. CLB is dominated by Si (43.04%), derived from silica and alkali and alkaline-earth metals silicates, and the migration of Fe, Cr, and Ni elements from the duct material was observed. Compared with WLB, from FTIR analysis, CLB contains more inorganic minerals, and the absorption peak of inorganic minerals is mainly attributed to asymmetric Si-O-Si. Many fine particles are attached to the surface of the WLB, while the surface of the CLB is smooth, and there is noticeable raised texture, which is presumed to be the result of particle melting and agglomerating as the bottom ash enters the duct in the gasification process. For the formation of the blockage, this paper speculates that it is mainly due to the difference in flow resistance near the air nozzle outlet, resulting in the formation of a flow dead zone at the bottom of the gasifier, which leads to large amounts of ash overcoming the outlet resistance and leaking into the air nozzle, and next, the ash corrodes in the tube, resulting in wall deposition and ultimately blocking the air guide duct. Two methods can be tried to avoid or inhibit the formation of blockage in the duct, including optimizing air nozzle with more wear-resistant and heat-resistant materials and adjusting the distance between air nozzles to avoid mutual interference from ash particles.

3.
J Colloid Interface Sci ; 661: 793-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325177

RESUMO

Novel two-dimensional MXene with unique optical and electrical properties has become a new focus in the field of sensing. In particular, their metallic conductivity, good biocompatibility and high anchoring ability to biomaterials make them attractive candidates. Despite such remarkable properties, there are certain limitations, such as low oxidative stability. MXene-Metal interactions are an effective strategy to maintain the long-term stability of MXene, while also improving the electrochemical activity and optical properties. Herein, a series of MXene/Ag nanocomposites including Ti3C2/Ag, Nb2C/Ag and V2C/Ag were designed based on the surface chemistry characteristics of MXene, where MXene served as the substrate for in-situ growth of silver nanoparticles via self-reduction of Ag(NH3)2+. The results showed that V2C MXene has the strongest self-reducing ability due to its multiple variable valence states, larger interlayer space and more reactive groups. Moreover, V2C/Ag exhibited unexpected oxygen reduction reaction catalytic activity and photothermal performance. In view of which, an electrochemiluminescence-photothermal (ECL-photothermal) immunosensor was developed using V2C/Ag as ECL anchor and photothermal reagent for ultrasensitive detection of Lipolysis stimulated lipoprotein receptor. This work not only provides a simple and effective synthesis method of MXene supported metal nanocomposites, but also provides more inspirations for exploring the efficient biosensing strategies.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nitritos , Neoplasias Ovarianas , Elementos de Transição , Feminino , Humanos , Biomarcadores Tumorais , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Prata/química , Imunoensaio
4.
J Agric Food Chem ; 72(8): 3984-3997, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357888

RESUMO

Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.


Assuntos
Camellia sinensis , Metilação de DNA , Metabolismo Secundário , Estações do Ano , Epigênese Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Neuron ; 112(3): 362-383.e15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016472

RESUMO

Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.


Assuntos
Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Ataxina-1/genética , Camundongos Transgênicos , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Modelos Animais de Doenças
6.
3D Print Addit Manuf ; 10(5): 887-904, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886405

RESUMO

Porous tantalum (Ta) scaffolds have been extensively used in the clinic for reconstructing bone tissues owing to their outstanding corrosion resistance, biocompatibility, osteointegration, osteoconductivity, and mechanical properties. Additive manufacturing (AM) has an advantage in fabricating patient-specific and anatomical-shape-matching bone implants with controllable and well-designed porous architectures through tissue engineering. The sharp angles of strut joints in porous structures can cause stress concentration, reducing mechanical properties of the structures. In this study, porous Ta scaffolds comprising rhombic dodecahedron lattice unit cells with optimized node radius and porosities of 65%, 75%, and 85% were designed and fabricated by AM. The porous architecture and microstructure were characterized. The compressive behavior and failure mechanism of the material were explored through experimental compression tests and finite element analysis (FEA). Morphological evaluations revealed that the Ta scaffolds are fully interconnected, and the struts are dense. No processing defects and fractures were observed on the surface of struts. The scaffolds exhibited compressive yield strength of 5.8-32.3 MPa and elastic modulus of 0.6-4.5 GPa, comparable to those of human cancellous and trabecular bone. The compressive stress-strain curves of all samples show ductile deformation behavior accompanied by a smooth plateau region. The AM-fabricated rhombic dodecahedron lattice Ta scaffolds exhibited excellent ductility and mechanical reliability and plastic failure due to bending deformation under compressive loading. Deformation and factures primarily occurred at the junctions of the rhombus-arranged struts in the longitudinal section. Moreover, the struts in the middle of the scaffolds underwent a larger deformation than those close to the loading ends. FEA revealed a smooth stress distribution on the rhombic dodecahedron lattice structure with optimized node radius and stress concentration at the junctions of rhombus-arranged struts in the longitudinal section, which is in good agreement with the experimental results. Thus, the AM-fabricated Ta scaffolds with optimized node radius are promising alternatives for bone repair and regeneration.

7.
Anal Chem ; 95(36): 13629-13637, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624588

RESUMO

Given that exosomes released from cancer cells carry various tumor-specific proteins on their surface, they have emerged as a source of biomarkers for cancer diagnosis. However, developing accurate and reliable assays to detect exosomes in the early stages of disease with low abundance and complex systems remains challenging. Here, the prepared PDIG film has the ability to sense multiple signals from a single stimulus, in which the presence of cobalt(II) chloride and deep eutectic solvents (DES) endows PDIG with thermochromic and thermosensitive properties. Concretely, the PDIG served as the recognition interface in series with a bipolar electrode (BPE) that exhibits a highly sensitive color and conductivity response to temperature stimuli triggered by the light-harvesting probe TiO2@CNOs introduced via proximity hybridization assay triggering a rolling circle amplification strategy, resulting in the output of colorimetric, photoacoustic, and electrochemiluminescent signals for the detection of colorectal cancer exosomes. This work is expected to provide a new direction for exploring the multisignal amplification strategy of BPE, broaden the application of BPE in biological analysis, and provide new insights for developing highly information-sensing elements to ensure the multimodal coupling for cancer-specific exosome detection.


Assuntos
Exossomos , Bioensaio , Cloretos , Cobalto , Colorimetria , Proteínas de Neoplasias
8.
ACS Omega ; 8(33): 30129-30138, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636938

RESUMO

In order to investigate how kaolin affects the structure and thermal conversion performance of Zhundong sub-bituminous coal (ZSBC), this study focused on analyzing the pyrolysis, combustion, and gasification of both ZSBC and a mixture of kaolin and Zhundong sub-bituminous coal (ZSBC-K) using the TG-DTG technique. The findings demonstrated that the addition of kaolin enhanced the pyrolysis and combustion performance of ZSBC-K. To explain the above phenomena, the composition and structure of char from ZSBC and ZSBC-K were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of kaolin decreased the degree of graphitization of char and increased the relative content of oxygen on the surface of the char. Moreover, the addition of kaolin increased the degree of disorder of the char and formed more char pores. The rich pores were conducive to the entry of the gasification agent into the coal char particles, which enhanced the gasification activity. Additionally, the coal char mixed with kaolin contains several oxygen-containing functional groups and defect sites that facilitate the cracking and gasification performance of the macromolecular network's aromatic ring structure.

9.
Mikrochim Acta ; 190(9): 372, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648806

RESUMO

Based on the highly specific interaction between concanavalin A (Con A) and glucose (Glu), a competitive electrochemiluminescence (ECL) biosensor was constructed for ultrasensitive detection of Con A. Nanocomposites with excellent electrocatalytic and photothermal properties were obtained by covalently bonding zinc oxide quantum dots (ZnO QDs) to vanadium carbide MXene (V2C MXene) surfaces. The modification of ZnO QDs hinders the aggregation of V2C MXene and increases the catalytic activity of oxygen reduction reaction, thus amplifying the luminol cathodic emission. In addition, the excellent photothermal performance of the V2C MXene-ZnO QDs can convert light energy into heat energy under the irradiation of 808 nm near infrared laser, thus increasing the temperature of the reaction system and accelerating the electron transfer process to realize the synergistic amplified homogeneous ECL system. This innovative work not only enriches the fundamental research on multifunctional MXene nanomaterials for biosensing, but also provides an effective strategy for ECL signal amplification.


Assuntos
Técnicas Biossensoriais , Concanavalina A , Eletroquímica , Eletroquímica/métodos , Transdução de Sinais , Concanavalina A/análise , Nitritos/química , Elementos de Transição/química , Pontos Quânticos , Óxido de Zinco/química , Humanos , Soro/química
10.
J Mater Chem B ; 11(30): 7209-7216, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427755

RESUMO

In order to detect early tumor markers and gain valuable time for treatment, there is an urgent need to develop a fast, cheap, and ultrasensitive multi-reading sensing platform. Herein, a solid/liquid two-phase dual-output biosensor was explored based on a sensitized sonochemiluminescence (SCL) strategy and a multifunctional carbon nano-onion (CNO) probe. It is clear that ultrasonic radiation caused the formation of hydroxyl radicals (˙OH), triggering the SCL signal of the emitter lucigenin (Luc2+). Meanwhile, titanium carbide nanodots and ethanol were used to enhance the SCL signal, and an astonishingly linear enhancement of the SCL intensity was produced with increasing ethanol concentration. More importantly, the CNOs, with their excellent photothermal properties and adsorption capacity, can output both the temperature signal and an enhanced SCL strength from the solid-liquid phase. Through inter-calibration of the signals from the two-phases, this biosensor shows excellent analytical performance for the detection of the ovarian cancer biomarker, human epididymis-specific protein 4, from 10-5 to 10 ng mL-1 with a low detection limit of 3.3 fg mL-1. This work not only provides a novel two-phase signal-output mode that broadens the scope of multiperformance joint applications of CNOs, but also enriches the quantitative detection of point-of-care testing.


Assuntos
Técnicas Biossensoriais , Neoplasias Ovarianas , Humanos , Feminino , Biomarcadores Tumorais , Carbono , Cebolas , Neoplasias Ovarianas/diagnóstico
11.
Talanta ; 265: 124876, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390673

RESUMO

Utilizing the photothermal effect to activate enzyme activity, realize signal conversion and amplification show promising prospects in biosensing. Herein, a pressure-colorimetric multi-mode bio-sensor was proposed through the multiple rolling signal amplification strategy of photothermal control. Under NIR light radiation, the Nb2C MXene labeled photothermal probe caused notable temperature elevation on a multi-functional signal conversion paper (MSCP), leading to decomposition of thermal responsive element and in-situ formation of Nb2C MXene/Ag-Sx hybrid. The generation of Nb2C MXene/Ag-Sx hybrid accompanied with valid color change from pale yellow to dark brown on MSCP. Moreover, the Ag-Sx as a signal amplification element enhanced the NIR light absorption to further improve the photothermal effect of Nb2C MXene/Ag-Sx thereby induce cyclic in situ production of Nb2C MXene/Ag-Sx hybrid with rolling enhanced photothermal effect. Subsequently, the continuously enhanced photothermal effect rolling activated catalase-like activity of Nb2C MXene/Ag-Sx, which accelerated the decomposition of H2O2 and promoted the pressure elevation. Therefore, the rolling-enhanced photothermal effect and rolling activated catalase-like activity of Nb2C MXene/Ag-Sx considerately amplified the pressure and color change. Making full use of multi-signal readout conversion and rolling signal amplification, accurate results can be obtained in a short time, whether in the laboratory or in the patient's homes.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Humanos , Feminino , Catalase , Colorimetria , Peróxido de Hidrogênio
12.
Anal Chem ; 95(26): 9967-9974, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341470

RESUMO

A stable and reusable electrochemiluminescent (ECL) signal amplification strategy was proposed through a pyrene-based conjugated polymer (Py-CP) triggered self-circulating enhancement system. Specifically, the delocalized conjugated π-electrons of Py-CPs made it an excellent coreactant to arouse the initial ECL signal improvement of Ru(phen)32+, but the subsequent signal reduction was attributed to the consumption of Py-CPs, in which this stage was called the signal sensitization evoking phase (SSEP). Then, the maximum use of ECL luminescence of Ru(phen)32+ produced in the SSEP was made to irradiate the photosensitizer Py-CPs for in situ producing numerous ·OH, and a stronger and more stable ECL response stage defined as the signal sensitization stabilize phase was reached. Encouragingly, the incorporation of Nb2C MXene quantum dots with an exceptional physicochemical property not only foreshortens the SSEP for quickly acquiring a stable ECL signal but also introduces the photoacoustic (PA) transduce mechanism for achieving dual-signal outputting. Ultimately, the portable and miniaturized ECL-PA synergetic sensing platform based on the closed-bipolar electrode realized sensitive let-7a detection in a wide linear range from 10-9 to 10-2 nM with a low detection limit of 3.3 × 10-10 nM and also demonstrated good selectivity, excellent stability, and high reliability. The successful application of an innovative signal transduction mechanism and dexterous coupling modality will provide new insights for advancing the development of flexible analytical devices.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Humanos , Polímeros/química , Reprodutibilidade dos Testes , Medições Luminescentes , Técnicas Eletroquímicas , Pirenos , Neoplasias Pulmonares/diagnóstico
13.
Biosens Bioelectron ; 235: 115413, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224585

RESUMO

Portable, maneuverable and reliable versatile-integrated analytical devices are urgently demanded but still extremely challenging to meet the requirements of point-of-care testing in resource-limited areas. Herein, a multifunctional sensing platform with excellent photothermal performance was implanted into the miniature zone of a paper-based electrochemiluminescent (ECL) biosensor for accurate detection of interleukin-6, which could flexibly interconnect the visualized distance and temperature readout with ultrasensitive ECL response. Concretely, the multipurpose MBene and TaSe2 composites (MBene@TaSe2) prepared via self-assembly approach as target-associated photothermal element was introduced in the paper-based analytical device (PAD) and served as multi-signals trigger. Under the laser irradiation, MBene@TaSe2 probe not only generated heat for rapid temperature output, but also triggered the phase transition behavior of thermoresponsive poly (N-isopropylacrylamide) (pNIPAM) hydrogel to release loaded malachite green (MG) dye for distance-based visual readout. Simultaneously, the released MG was also utilized as effective quencher to decrease the ECL signal of luminol. Benefitting from this dexterous architecture, the speedy preliminary screening and precise quantitative analysis could be subsequently obtained in single-drop sample through one-step sandwich immunoreaction, which avoids additional separation operations and greatly simplifies the analysis procedure. Undeniably, this work provides ingenious insights for advancing the development of convenient and fast multifunction-integrated PAD in family surveillance and intelligent diagnosis.


Assuntos
Técnicas Biossensoriais , Preparações de Ação Retardada , Técnicas Biossensoriais/métodos , Biomarcadores , Hidrogéis , Testes Imediatos
14.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
15.
Mikrochim Acta ; 190(3): 108, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867247

RESUMO

A fluorescence quenching enhanced immunoassay has been developed to achieve ultrasensitive recognition of human epididymal 4 (HE4) modifying the fluorescence quencher. The carboxymethyl cellulose sodium-functionalized Nb2C MXene nanocomposite (CMC@MXene) was firstly introduced to quench the fluorescence signal of the luminophore Tb-Norfloxacin coordination polymer nanoparticles (Tb-NFX CPNPs). The Nb2C MXene nanocomposite as fluorescent nanoquencher inhibits the electron transfer between Tb and NFX to quench the fluorescent signal by coordinating the strongly electronegative carboxyl group on CMC with Tb (III) of Tb-NFX complex. Simultaneously, due to the superior photothermal conversion capability of CMC@MXene, the fluorescence signal has been further weakened by the photothermal effect driven non-radiative decay of the excited state under near-infrared laser irradiation. The constructed fluorescent biosensor based on CMC@MXene probe finally realized the enhanced fluorescence quenching effect, and achieved ultra-high sensitivity and selective detection of HE4, exhibiting a wide linear relationship with HE4 concentration on the logarithmic axis in the range of 10-5 to 10 ng/mL and a low detection limit of 3.3 fg/mL (S/N = 3). This work not only provides an enhanced fluorescent signal quenching method for the detection of HE4, but also provides novel insights for the design of fluorescent sensor toward different biomolecules.


Assuntos
Carboximetilcelulose Sódica , Norfloxacino , Humanos , Fluorescência , Corantes , Raios Infravermelhos
16.
Hortic Res ; 10(2): uhac267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778187

RESUMO

Glutamine synthetase type I (GSI)-like proteins are proposed to mediate nitrogen signaling and developmental fate by synthesizing yet unidentified metabolites. Theanine, the most abundant non-proteinogenic amino acid in tea plants, is the first identified metabolite synthesized by a GSI-like protein (CsTSI) in a living system. However, the roles of theanine in nitrogen signaling and development are little understood. In this study we found that nitrogen deficiency significantly reduced theanine accumulation and increased lateral root development in tea plant seedlings. Exogenous theanine feeding significantly repressed lateral root development of seedlings of tea plants and the model plant Arabidopsis. The transcriptomic analysis revealed that the differentially expressed genes in the roots under theanine feeding were enriched in the apoplastic pathway and H2O2 metabolism. Consistently, theanine feeding reduced H2O2 levels in the roots. Importantly, when co-treated with H2O2, theanine abolished the promoting effect of H2O2 on lateral root development in both tea plant and Arabidopsis seedlings. The results of histochemical assays confirmed that theanine inhibited reactive oxygen species accumulation in the roots. Further transcriptomic analyses suggested the expression of genes encoding enzymes involved in H2O2 generation and scavenging was down- and upregulated by theanine, respectively. Moreover, the expression of genes involved in auxin metabolism and signaling, cell division, and cell expansion was also regulated by theanine. Collectively, these results suggested that CsTSI-synthesized theanine is likely involved in the regulation of lateral root development, via modulating H2O2 accumulation, in response to nitrogen levels in tea plants. This study also implied that the module consisting of GSI-like protein and theanine-like metabolite is probably conserved in regulating development in response to nitrogen status in plant species.

17.
Hortic Res ; 10(1): uhac245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643747

RESUMO

Theanine, a unique and the most abundant non-proteinogenic amino acid in tea plants, endows tea infusion with the umami taste and anti-stress effects. Its content in tea correlates highly with green tea quality. Theanine content in new shoots of tea plants is high in mid-spring and greatly decreases in late spring. However, how the decrease is regulated is largely unknown. In a genetic screening, we observed that a yeast mutant, glutamate dehydrolase 2 (gdh2), was hypersensitive to 40 mM theanine and accumulated more theanine. This result implied a role of CsGDH2s in theanine accumulation in tea plants. Therefore, we identified the two homologs of GDH2, CsGDH2.1 and CsGDH2.2, in tea plants. Yeast complementation assay showed that the expression of CsGDH2.1 in yeast gdh2 mutant rescued the theanine hypersensitivity and hyperaccumulation of this mutant. Subcellular localization and tissue-specific expression showed CsGDH2.1 localized in the mitochondria and highly expressed in young tissues. Importantly, CsGDH2.1 expression was low in early spring, and increased significantly in late spring, in the new shoots of tea plants. These results all support the idea that CsGDH2.1 regulates theanine accumulation in the new shoots. Moreover, the in vitro enzyme assay showed that CsGDH2.1 had glutamate catabolic activity, and knockdown of CsGDH2.1 expression increased glutamate and theanine accumulation in the new shoots of tea plants. These findings suggested that CsGDH2.1-mediated glutamate catabolism negatively regulates theanine accumulation in the new shoots in late spring, and provides a functional gene for improving late-spring green tea quality.

18.
Anal Chem ; 94(38): 13269-13277, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36109852

RESUMO

An electrochemiluminescent (ECL)-photoacoustic (PA) dual-signal output biosensor based on the modular optimization and wireless nature of a bipolar electrode (BPE) was constructed. To further simplify the detection process, the BPE structure was designed as three separate units: anode ECL collection, cathode catalytic amplification, and intermediate functional sensing units. Specifically, the anode unit was placed with Eosin Yellow, a cheap and effective ECL reagent, and the cathode unit was a laser-induced polyoxometalate-graphene electrode, which was helpful to enhance the anode ECL signal. The intermediate functional sensing unit consisted of a temperature-sensitive conductive film. Further, using a carbon nano-onion nanocomposite with excellent absorption performance in the near-infrared region as a signal tag not only leads to changes in the electrical conductivity of the film through heat transfer and thus affects the ECL signal but also produces a strong PA response. With this design, PA and ECL signals can be output simultaneously. This work not only realizes multiple modularization processes in the design of sensors but also implements the diversification of signal output modes, which will enrich the joint research field of ECL detection technology and other new detection methods.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias Ovarianas , Ânions , Técnicas Biossensoriais/métodos , Carbono , Técnicas Eletroquímicas/métodos , Eletrodos , Amarelo de Eosina-(YS) , Feminino , Grafite/química , Humanos , Medições Luminescentes/métodos , Cebolas , Neoplasias Ovarianas/diagnóstico , Polieletrólitos
19.
Nat Cancer ; 3(10): 1228-1246, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138189

RESUMO

Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.


Assuntos
Adrenérgicos , Neuroblastoma , Humanos , Linhagem da Célula/genética , Inibidores de Checkpoint Imunológico , Neuroblastoma/genética , Citocinas/genética , Fenótipo
20.
Nature ; 608(7922): 405-412, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922506

RESUMO

After cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death1,2. Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology3. To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges. Here we describe OrganEx, an adaptation of the BrainEx extracorporeal pulsatile-perfusion system and cytoprotective perfusate for porcine whole-body settings. After 1 h of warm ischaemia, OrganEx application preserved tissue integrity, decreased cell death and restored selected molecular and cellular processes across multiple vital organs. Commensurately, single-nucleus transcriptomic analysis revealed organ- and cell-type-specific gene expression patterns that are reflective of specific molecular and cellular repair processes. Our analysis comprises a comprehensive resource of cell-type-specific changes during defined ischaemic intervals and perfusion interventions spanning multiple organs, and it reveals an underappreciated potential for cellular recovery after prolonged whole-body warm ischaemia in a large mammal.


Assuntos
Sobrevivência Celular , Citoproteção , Perfusão , Suínos , Isquemia Quente , Animais , Morte Celular , Perfilação da Expressão Gênica , Isquemia/metabolismo , Isquemia/patologia , Isquemia/prevenção & controle , Especificidade de Órgãos , Perfusão/métodos , Suínos/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...