Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(14): eadl1884, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579002

RESUMO

Introducing natural Bouligand structure into synthetics is expected to develop high-performance structural materials. Interfibrous interface is critical to load transfer, and mechanical functionality of bioinspired Bouligand structure yet receives little attention. Here, we propose one kind of hierarchical and reconfigurable interfibrous interface based on moderate orderliness to mechanically reinforce bioinspired Bouligand structure. The interface imparted by moderate alignment of adaptable networked nanofibers hierarchically includes nanofiber interlocking and hydrogen-bonding (HB) network bridging, being expected to facilitate load transfer and structural stability through dynamic adjustment in terms of nanofiber sliding and HB breaking-reforming. As one demonstration, the hierarchical and reconfigurable interfibrous interface is constructed based on moderate alignment of networked bacterial cellulose nanofibers. We show that the resultant bioinspired Bouligand structural material exhibits unusual strengthening and toughening mechanisms dominated by interface-microstructure multiscale coupling. The proposed interfibrous interface enabled by moderate orderliness would provide mechanical insight into the assembly of widely existing networked nanofiber building blocks toward high-performance macroscopic bioinspired structural assemblies.

2.
Nano Lett ; 23(19): 9011-9019, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676743

RESUMO

Freeze-casting has been wildly exploited to construct porous ceramics but usually requires costly and demanding freeze-drying (high vacuum, size limit, and supercooled chamber), which can be avoided by the ambient pressure drying (APD) technique. However, applying APD to freeze-cast ceramic based on an aqueous suspension is still challenging due to inert surface chemistry. Herein, a modified APD strategy is developed to improve the drying process of freeze-cast ceramics by exploiting the simultaneous ice etching, ionic cross-linking, and solvent exchange under mild conditions (-10-0 °C, ambient pressure). This versatile strategy is applicable to various ceramic species, metal ions, and freezing techniques. The incorporated metal ions not only enhance liquid-phase sintering, producing ceramics with higher density and mechanical properties than freeze-cast counterparts, but also render customizable coloration and antibacterial property. The cost-/time-efficient APD is promising for mass production and even successive production of large-size freeze-cast ceramics that exceed the size of commercial freeze-dryers.

3.
Natl Sci Rev ; 10(2): nwac195, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36817831

RESUMO

Although short bamboo nodes function in mechanical support and fluid exchange for bamboo survival, their structures are not fully understood compared to unidirectional fibrous internodes. Here, we identify the spatial heterostructure of the bamboo node via multiscale imaging strategies and investigate its mechanical properties by multimodal mechanical tests. We find three kinds of hierarchical fiber reinforcement schemes that originate from the bamboo node, including spatially tightened interlocking, triaxial interconnected scaffolding and isotropic intertwining. These reinforcement schemes, built on porous vascular bundles, microfibers and more-refined twist-aligned nanofibers, govern the structural stability of the bamboo via hierarchical toughening. In addition, the spatial liquid transport associated with these multiscale fibers within the bamboo node is experimentally verified, which gives perceptible evidence for life-indispensable multidirectional fluid exchange. The functional integration of mechanical reinforcement and liquid transport reflects the fact that the bamboo node has opted for elaborate structural optimization rather than ingredient richness. This study will advance our understanding of biological materials and provide insight into the design of fiber-reinforced structures and biomass utilization.

4.
Adv Mater ; 35(14): e2209510, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36661134

RESUMO

Lightweight structural materials with a unique combination of high stiffness, strength, toughness, and hardness, are highly desired yet challenging to be artificially fabricated. Biological structural materials, on the other hand, ingeniously integrate multiple mutually exclusive mechanical properties together relying on their hierarchically heterogeneous structures bonded with gradient interfaces. Here, a scalable bottom-up approach combining continuous nanofiber-assisted evaporation-induced self-assembly with laminating, pressure-less sintering and resin infiltration is reported to fabricate bioinspired heterogeneous ceramic-resin composites with locally tunable microstructure to fulfill specific properties. A gradient interlayer is introduced to provide a gradual transition between adjacent heterogeneous layers, effectively alleviating their property mismatch. The optimized heterogeneous nacre-like composite, as a demonstration, exhibits an attractive combination of low density (≈2.8 g cm-3 ), high strength (≈292 MPa), toughness (≈6.4 MPa m1/2 ), surface hardness (≈1144 kgf mm-2 ) and impact-resistance, surpassing the overall performance of engineering alumina. This material-independent approach paves the way for designing advanced bioinspired heterogeneous materials for diverse structural and functional applications.

5.
Phytomedicine ; 45: 49-58, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29691116

RESUMO

BACKGROUND: Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. PURPOSE: Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. METHODS: The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RESULTS: RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. CONCLUSION: A Q-marker database of processed RWI by "sweat soaking method" was established according to the results and relationship of "effect-toxicity-chemicals", which provided a scientific evidence for processing methods, mechanism and the clinical application of RWI, also provided experimental results to explore the application of Q-marker in CHM.


Assuntos
Biomarcadores Farmacológicos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Wikstroemia/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , China/etnologia , Cromatografia Líquida/métodos , Cumarínicos/análise , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/análise , Emodina/análogos & derivados , Emodina/análise , Furanos/análise , Humanos , Lignanas/análise , Espectrometria de Massas/métodos , Camundongos , Extratos Vegetais/análise , Extratos Vegetais/farmacologia
6.
Xenobiotica ; 45(11): 978-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053557

RESUMO

1. Rutaecarpine, a quinolone alkaloid isolated from the unripe fruit of Evodia rutaecarpa, is one of the main active components used in a variety of clinical applications, including the treatment of hypertension and arrhythmia. However, its hepatotoxicity has also been reported in recent years. 2. Reactive metabolites (RMs) play a vital role in drug-induced liver injury. Rutaecarpine has a secondary amine structure that may be activated to RMs. The aim of the study was to investigate the inhibition of rutaecarpine on CYPs and explore the possible relationship between RMs and potential hepatotoxicity. 3. A cell counting kit-8 cytotoxicity assay indicated that rutaecarpine can decrease the primary rat hepatocyte viability, increase lactate dehydrogenase and reactive oxygen species, reduce JC-1, and cause cell stress and membrane damage. The indexes were significantly restored by adding ABT, an inhibitor of CYPs. A cocktail assay showed that CYP1A2, CYP2C9, CYP2C19, CYP2E1 and CYP3A4 can be inhibited by rutaecarpine in human liver microsomes. The IC50 values of CYP1A2 with and without NADPH were 2.2 and 7.4 µM, respectively, which presented a 3.3 shift. The results from a metabolic assay indicated that three mono-hydroxylated metabolites and two di-hydroxylated metabolites were identified and two GSH conjugates were also trapped. 4. Rutaecarpine can inhibit the activities of CYPs and exhibit a potential mechanism-based inhibition on CYP1A2. RMs may cause herb-drug interactions, providing important information for predicting drug-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Alcaloides Indólicos , Quinazolinas , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inibidores das Enzimas do Citocromo P-450/efeitos adversos , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Humanos , Alcaloides Indólicos/efeitos adversos , Alcaloides Indólicos/farmacocinética , Alcaloides Indólicos/farmacologia , Quinazolinas/efeitos adversos , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...