Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Knee ; 50: 154-162, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178724

RESUMO

BACKGROUND: Soccer is one of the most popular sports worldwide, which subsequently increases the number of injuries experienced by players. Furthermore, a large percentage of all anterior cruciate ligament injuries occur while playing soccer. In order to more clearly understand injury mechanisms, it is important to make the testing environment as real-life as possible. Inclusion of an external focus and secondary task, such as heading a soccer ball, may increase joint loading during landing. The purpose of this study was to investigate the effect of a forward heading motion on lower extremity kinetics and kinematics between sexes during a stop-jump task and a jump-heading task. METHODS: Ten male and ten female soccer players performed stop-jumps with no soccer ball present and jump-headings with a soccer ball present. Three-dimensional kinematics and kinetics were collected and analyzed during the landing. 2 × 2 mixed design analysis of variances (ANOVA) were performed to examine sex × jump task interactions and determine the main effects of sex and jump task. RESULTS: Results indicated jump-heading yields greater peak vertical ground reaction forces, an 8% increase in peak knee extension moments, a reduced initial knee flexion angle by approximately 5°, and an increased initial hip flexion angle by approximately 7°. Additionally, females exhibited 5.6° greater peak knee abduction angles compared to men, regardless of task. CONCLUSIONS: Inclusion of an overhead target may have distracted the athletes from focusing on frontal plane knee control when landing, and could potentially lead to increased ACL stress.

2.
J Biomech ; 172: 112205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955092

RESUMO

Although knee biomechanics has been examined, hip and ankle biomechanics in incline ramp walking has not been explored for patients with total knee arthroplasty (TKA). The purpose of this study was to investigate the hip and ankle joint kinematic and kinetic biomechanics of different incline slopes for replaced limbs and non-replaced limbs in individuals with TKA compared to healthy controls. Twenty-five patients with TKR and ten healthy controls performed walking trials on four slope conditions of level (0°), 5°, 10° and 15° on a customized instrumented ramp system. A 3x4 (limb x slope) repeated analysis of variance was used to evaluate selected variables. The results showed a greater peak ankle dorsiflexion angle in the replaced limbs compared to healthy limbs. No significant interactions or limb main effect for other ankle and hip variables. The peak dorsiflexion angle, eversion angle and dorsiflexion moment were progressively higher in each comparison from level to 15°. The peak plantarflexion moment was also increased with each increase of slopes. Both the replaced and non-replaced limbs of patients with TKA had lower hip flexion moments than the healthy control limbs. Hip angle at contact and hip extension range of motion increased with each increase of slopes. Peak hip loading-response internal extension moment increased with each increase in slope and peak hip push-off internal flexion moment decreased with each increase of slope. Our results showed increased dorsiflexion in replaced limbs but no other compensations of hip and ankle joints of replaced limbs compared to non-replaced limbs and their healthy controls during incline walking, providing further support of using incline walking in rehabilitation for patients with TKA.


Assuntos
Articulação do Tornozelo , Artroplastia do Joelho , Caminhada , Humanos , Feminino , Masculino , Fenômenos Biomecânicos , Idoso , Caminhada/fisiologia , Pessoa de Meia-Idade , Articulação do Tornozelo/fisiopatologia , Amplitude de Movimento Articular , Articulação do Quadril/fisiopatologia , Articulação do Quadril/cirurgia , Articulação do Quadril/fisiologia , Marcha/fisiologia
3.
PLoS One ; 19(7): e0306274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968201

RESUMO

The purpose of this study was to evaluate the validity and reliability of the loadsol in measuring pedal reaction force (PRF) during stationary cycling as well as lower limb symmetry. Ten healthy participants performed bouts of cycling at 1kg, 2kg, and 3kg workloads (conditions) on a cycle ergometer. The ergometer was fitted with instrumented pedals and participants wore loadsol plantar pressure insoles. A 3 x 2 (Condition x Sensor Type) ANOVA was used to examine the differences in measured peak PRF, impulse, and symmetry indices. Root mean square error, intraclass correlation coefficients, and Passing-Bablok regressions were used to further assess reliability and validity. The loadsol demonstrated poor (< 0.5) to excellent (> 0.9) agreement as measured by intraclass correlation coefficients for impulse and peak PRF. Passing-Bablok regression revealed a systematic bias only when assessing all workloads together for impulse with no bias present when looking at individual workloads. The loadsol provides a consistent ability to measure PRF and symmetry when compared to a gold standard of instrumented pedals but exhibits an absolute underestimation of peak PRF. This study provides support that the loadsol can identify and track symmetry differences in stationary cycling which means there is possible usage for clinical scenarios and interventions in populations with bilateral asymmetries such as individuals with knee replacements, limb length discrepancies, diabetes, or neurological conditions. Further investigation of bias should be conducted in longer cycling sessions to ensure that the loadsol system is able to maintain accuracy during extended use.


Assuntos
Ciclismo , Humanos , Ciclismo/fisiologia , Masculino , Adulto , Feminino , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Adulto Jovem , Pé/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37510574

RESUMO

The purpose of this study was to determine differences in total (TCF), medial compartment (MCF), and lateral compartment (LCF) tibiofemoral joint compressive forces and related muscle forces between replaced and non-replaced limbs during level and uphill walking at an incline of 10°. A musculoskeletal modeling and simulation approach using static optimization was used to determine the muscle forces and TCF, MCF, and LCF for 25 patients with primary TKA. A statistical parametric mapping repeated-measures ANOVA was conducted on knee compressive forces and muscle forces using statistical parametric mapping. Greater TCF, MCF, and LCF values were observed throughout the loading response, mid-stance, and late stance during uphill walking. During level walking, knee extensor muscle forces were greater throughout the first 50% of the stance during level walking, yet greater during uphill walking during the last 50% of the stance. Conversely, knee flexor muscle forces were greater through the loading response and push-off phases of the stance. No between-limb differences were observed for compressive or muscle forces, suggesting that uphill walking may promote a more balanced loading of replaced and non-replaced limbs. Additionally, patients with TKA appear to rely on the hamstrings muscle group during the late stance for knee joint control, thus supporting uphill walking as an effective exercise modality to improve posterior chain muscle strength.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Joelho , Músculo Esquelético/fisiologia , Marcha/fisiologia
5.
Clin Biomech (Bristol, Avon) ; 102: 105900, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36739666

RESUMO

BACKGROUND: Downhill walking is a necessary part of daily life and an effective activity in post-operative rehabilitation following total knee arthroplasty. The purpose of this study was to determine differences in the behavior of total, medial, and lateral tibiofemoral compressive forces as well as knee extensor and flexor muscle forces between different limbs of patients with total knee arthroplasty (replaced, non-replaced) during downhill and level walking. METHODS: Musculoskeletal modeling and simulation were implemented to determine muscle forces and tibiofemoral compressive forces in 25 patients with total knee arthroplasty. A 2 × 2 [Limb (replaced, non-replaced) × Slope (0°, 10°)] Statistical parametric mapping repeated measures analysis of variance was conducted on selected variables. FINDINGS: Statistical parametric mapping did not identify any between-limb differences for compressive or muscle forces. Differences in joint compressive and muscle forces persisted throughout different intervals of stance-phase between level and downhill walking. Knee extensor muscle forces were distinctly greater during level walking for nearly all of stance phase. Knee flexor muscle force was greater during downhill walking for >60% of stance. Statistical parametric mapping did identify regions of significance between level and downhill walking that coincided temporally (near loading response and push off) with peak joint moment and joint compressive forces traditionally reported using discrete variable analyses. INTERPRETATION: Downhill walking may be a safe and useful rehabilitation tool for post-knee arthroplasty rehabilitation that will not disproportionally load either the replaced or the non-replaced joint and where the quadriceps muscles can be strengthened during a gait-specific task.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Fenômenos Mecânicos , Articulação do Joelho/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia
6.
Sports Biomech ; 22(4): 494-509, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34549669

RESUMO

Changes in the workrate and seat position have been linked to changes in internal knee extension moment. However, there is limited research on effects of those changes on knee kinetics in recumbent bike. The purpose of this study was to examine the effects of different seat positions and workrates on KAbM, knee extension moment and perceived effort during stationary recumbent cycling. Fifteen cyclists cycled on a recumbent ergometer in 6 test conditions of pedalling in far, medium and close seat positions in each of the two workrates of 60 and 100 W at the cadence of 80 RPM. A three-dimensional motion analysis system and a pair of instrumented pedals collected kinematic and kinetic data. A 3 ×2 repeated measures ANOVA was used to examine the effect of seat positions and workrates on selected variables of interest. Different seat positions did not change either peak KAbM (p = 0.592) or knee extension moment (p = 0.132). Increased workrates significantly increased peak KAbM (p <0.001 and ηp2 =0.794) and knee extension moment (p <0.001 and ηp2=0.722). This study showed that the far or close seat position did not increase frontal-plane or overall knee joint loading and provided evidence for prescribing recumbent bike for healthy population.


Assuntos
Ciclismo , Articulação do Joelho , Humanos , Fenômenos Biomecânicos , Joelho ,
7.
J Appl Biomech ; 38(3): 179-189, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588765

RESUMO

Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Caminhada
8.
Knee ; 34: 9-16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34875499

RESUMO

BACKGROUND: Many total knee replacement (TKR) patients need to have a contralateral knee replacement. Biomechanical differences between first and second replaced limbs of bilateral TKR have not been examined during stair negotiation. Additionally, it is unknown whether hip and ankle biomechanics of bilateral patients are altered. We examined hip, knee, and ankle biomechanics of first and second replaced limbs bilateral patients, as well as replaced and non-replaced limbs of unilateral patients, during stair ascent and descent. METHODS: Eleven bilateral TKR patients (70.09 ± 5.41 years, 1.71 ± 0.08 m, 91.78 ± 13.00 kg) and 15 unilateral TKR patients (64.93 ± 5.11 years, 1.75 ± 0.09 m, 89.18 ± 17.55 kg) were recruited. Patients performed three to five trials of stair ascent and descent. The second step, during ascent, was the step of interest when analyzing each limb. A 2 × 2 (limb × group) analysis of variance was performed to determine differences between limbs and groups. RESULTS: During ascent, bilateral patients exhibited decreased peak loading-response knee extension (KEM) and push-off plantarflexion moments. Unilateral replaced limb KEM was lower than non-replaced limbs. During descent, bilateral patients descended the staircase significantly slower, had lower peak loading-response vertical ground reaction force and KEM, and push-off KEM. Bilateral patients had higher peak loading-response hip extension and push-off plantarflexion moments, and increased knee adduction ROM, compared with unilateral TKA patients. CONCLUSIONS: Bilateral patients exhibited similar hip, knee, and ankle joint moments between first and second replaced limbs. Substantial differences in hip, knee, and ankle biomechanics during stair negotiation in bilateral patients compared with unilateral patients may indicate a more complex adaptation strategy present in these patients.


Assuntos
Artroplastia do Joelho , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Humanos , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Negociação , Amplitude de Movimento Articular/fisiologia , Caminhada
9.
Sports Biomech ; 21(6): 748-760, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32013751

RESUMO

Adding a shock pad as an underlayment to synthetic turf aims to improve attenuation of impact forces. The purpose of this research was to investigate effects of an infilled synthetic turf with three different shock pads on impact attenuation related biomechanics of lower extremity during the drop landing. Twelve active and healthy recreational male athletes performed 60 cm drop landing with a controlled landing technique on five surface conditions: a baseline surface (force platform), an infilled synthetic turf surface, turf plus foam shock pad, turf plus a low-density shock pad, and turf plus a high-density shock pad. Furthermore, a mechanical impact test was conducted (ASTM F355). Turf plus foam shock pad, turf plus low-density shock pad, and turf plus high-density shock pad all resulted in significantly lower 1st vertical peak ground reaction force (13.3%, 13.3%, and 12.7% reductions, respectively) and loading rate (20.4%, 25.4%, and 21.1% reductions, respectively) compared to baseline surface. Significantly greater trunk extension moment was found on turf plus low-density shock pad compared to turf surface (21.2%) and turf plus foam shock pad (12.0%). These results suggest that synthetic turf plus shock pad surfaces provide improved impact attenuation compared to baseline surface in the early landing phase.


Assuntos
Extremidade Inferior , Tronco , Atletas , Fenômenos Biomecânicos , Biofísica , Humanos , Masculino
10.
J Sport Health Sci ; 11(1): 50-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540108

RESUMO

PURPOSE: The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement (TKR) patients and healthy controls during walking on level ground and on decline surfaces of 5°, 10°, and 15°. METHODS: Twenty-five TKR patients and 10 healthy controls performed 5 walking trials on different decline slopes on a force platform and an instrumented ramp system. Two analyses of variance, 2 × 2 (limb × group) and 2 × 4 (limb × decline slope), were used to examine selected biomechanics variables. RESULTS: The replaced limb of TKR patients had lower peak loading-response and push-off knee extension moment than the non-replaced and the matched limb of healthy controls. No differences were found in loading-response and push-off knee internal abduction moments among replaced, non-replaced, and matched limb of healthy controls. The knee flexion range of motion, peak loading-response vertical ground reaction force, and peak knee extension moment increased across all slope comparisons between 0° and 15° in both the replaced and non-replaced limb of TKR patients. CONCLUSION: Downhill walking may not be appropriate to include in early stage rehabilitation exercise protocols for TKR patients.


Assuntos
Artroplastia do Joelho , Fenômenos Biomecânicos/fisiologia , Humanos , Joelho/fisiologia , Joelho/cirurgia , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Caminhada/fisiologia
11.
J Biomech Eng ; 143(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159353

RESUMO

Many unilateral total knee replacement (TKR) patients will need a contralateral TKR. Differences in knee joint biomechanics between bilateral patients and unilateral patients are not well established. The purpose of this study was to examine knee joint differences in level walking between bilateral and unilateral patients, and asymptomatic controls, using principal component analysis. Knee joints of 1st replaced limbs of 15 bilateral patients (69.40 ± 5.04 years), 15 replaced limbs of unilateral patients (66.47 ± 6.15 years), and 15 asymptomatic controls (63.53 ± 9.50 years) were analyzed during level walking. Principal component analysis examined knee joint sagittal- and frontal-plane kinematics and moments, and vertical ground reaction force (GRF). A one-way analysis of variance analyzed differences between principal component scores of each group. TKR patients exhibited more flexed and abducted knees throughout stance, decreased sagittal knee range of motion (ROM), increased early-stance adduction ROM, decreased loading-response knee extension and push-off knee flexion moments, decreased loading-response and push-off peak knee abduction moment (KAbM), increased KAbM at midstance, increased midstance vertical GRF, and decreased loading-response and push-off vertical GRF. Additionally, bilateral patients exhibited reduced sagittal knee ROM, increased adduction ROM, decreased sagittal knee moments throughout stance, decreased KAbM throughout stance, an earlier loading-response peak vertical GRF, and a decreased push-off vertical GRF, compared to unilateral patients. TKR patients, especially bilateral patients had stiff knee motion in the sagittal-plane, increased frontal-plane joint laxity, and a quadriceps avoidance gait.


Assuntos
Artroplastia do Joelho
12.
J Biomech Eng ; 143(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008834

RESUMO

The purpose of this study was to determine how tibiofemoral joint compressive forces and knee joint-spanning muscle forces during uphill walking change compared to level walking in patients with total knee arthroplasty (TKA). A musculoskeletal model capable of resolving total (TCF), medial (MCF), and lateral (LCF) tibiofemoral compressive forces was used to determine compressive forces and muscle forces during level and uphill walking on a 10 deg incline for twenty-five post-TKA patients. A 2 × 2 (slope: level and 10 deg × limb: replaced and nonreplaced) repeated measures analysis of variance was used to detect differences in knee contact forces between slope and limb conditions and their interaction. Peak loading-response TCF, MCF, and LCF were greater during uphill walking than level walking for nonreplaced limbs. During uphill walking, peak loading-response TCF was smaller in replaced limbs compared to nonreplaced limbs with no change in MCF or LCF. Peak knee extension moment and knee extensor muscle force were smaller in replaced limbs compared to nonreplaced limbs during uphill walking. During level walking, replaced and nonreplaced limbs experienced rather equal joint loading; however, replaced limb experienced reduced joint loading during uphill walking. Differences in joint loading between replaced and nonreplaced limbs were not present during level walking, suggesting compensation from the replaced limb during the more difficult task. Uphill walking following TKA promotes more balanced loading of replaced limbs during stance; however, these benefits may come at the expense of increased loading on nonreplaced limbs.


Assuntos
Artroplastia do Joelho
13.
J Appl Biomech ; 37(4): 365-372, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051697

RESUMO

Patient dissatisfaction following total knee replacement (TKR) procedures is likely influenced by both subjective and objective aspects. Increased pain and reduced performance on clinical tests have been shown in persons who are dissatisfied with the outcome of their surgery. However, it is unknown how overground walking kinematics and kinetics might differ in the dissatisfied versus satisfied patients following TKR surgery. This study compared the lower-extremity walking kinematics and kinetics of patients dissatisfied with their TKR to that of satisfied patients and healthy controls. Thirty nine subjects completed walking trials, including nine dissatisfied and 15 satisfied TKR patients and 15 healthy controls. A 2 × 3 repeated -measures analysis of variance was used to assess differences between groups and limbs (P < .05). Dissatisfied persons showed significantly reduced loading-response and push-off peak vertical ground reaction forces, flexion range of motion, loading-response extension moments, and loading-response abduction moments compared to the controls. Peak loading-response and push-off vertical ground reaction forces and flexion range of motion were reduced in the replaced limb of dissatisfied patients compared with their nonreplaced limb. Push-off plantar flexion moments were reduced in the dissatisfied patients compared with the satisfied and healthy controls. Dissatisfied patients also reported increased knee joint pain and reduced preferred gait speed. Moreover, dissatisfied patients experienced mechanical limb asymmetries not present in those satisfied with their surgery result. Thus, patients dissatisfied with their total knee replacement outcome were found to be experiencing significant negative physiological changes.


Assuntos
Artroplastia do Joelho , Fenômenos Biomecânicos , Marcha , Humanos , Amplitude de Movimento Articular , Caminhada
14.
J Biomech ; 118: 110271, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33567380

RESUMO

As Q-Factor (QF: inter-pedal distance) is increased, the internal knee abduction moment (KAbM) also increases, however it is unknown if this increased KAbM is associated with increased medial compartment knee joint contact force in cycling. In the absence of in vivo measurement, musculoskeletal modeling simulations may provide a viable option for estimating knee joint contact forces in cycling. The primary purpose of this study was to investigate the effect of increasing QF on knee joint total (TCF), and medial (MCF) compartment contact force during ergometer cycling. The secondary purpose was to evaluate whether KAbM and knee extension moment are accurate predictors of MCF in cycling. Musculoskeletal simulations were performed to estimate TCF and MCF for sixteen participants cycling at an original QF (150 mm), and wide QF (276 mm), at 80 W and 80 rotations per minute. Paired samples t-tests were used to detect differences between QF conditions. MCF increased significantly, however, TCF did not change at wide QF. Peak knee extensor muscle force did not change at wide QF. Peak knee flexor muscle force was significantly reduced with wide QF. Regression analyses showed KAbM and knee extension moments explained 87.4% of the variance in MCF when considered alongside QF. The increase of MCF may be attributed to increased frontal-plane pedal reaction force moment arm. Future research may seek to implement QF modulation as a part of rehabilitation or training procedures utilizing cycling in cases where medial compartment joint loading is of importance.


Assuntos
, Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Músculo Esquelético
15.
Knee ; 29: 233-240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33640622

RESUMO

INTRODUCTION: Cycling is a common modality for rehabilitation and exercise. However, there is a lack of information in the literature on the effects of saddle height adjustments on internal peak knee abduction moment, which is an important loading variable for the medial compartment of tibiofemoral joint for patients with knee osteoarthritis. The purpose of this study was to examine effects of saddle height on frontal-plane biomechanics of the knee during cycling. METHODS: Fourteen recreational cyclists (age: 57.1 ± 6.37 years) performed 2-min bouts of cycling at three saddle heights of 40°, 30° and 20° knee extension angle at bottom crank position, at two workrates of 80 and 120 W. Three-dimensional kinematic, kinetic, and electromyography data were collected and analyzed using a 3 × 2 (height × workrate) analysis of variance (ANOVA). RESULTS: There were no changes in internal knee abduction moment across saddle heights. Increases in saddle height from 40° to both 30° and 20° reduced the knee extension moment (d = 0.3 and 0.4, respectively, P = 0.012). Increases in workrate increased both knee abduction and extension moments (η2p = 0.75 and 0.88, respectively, P < 0.001 for both). CONCLUSIONS: Increased knee extension moment with decreased saddle height is likely to indicate increased knee joint load.


Assuntos
Ciclismo , Joelho/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade
16.
J Biomech ; 115: 110111, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33234260

RESUMO

Stationary cycling is typically recommended following total knee arthroplasty (TKA) operations. However, knee joint biomechanics during cycling remains mostly unknown for TKA patients. Biomechanical differences between the replaced and non-replaced limb may inform applications of cycling in TKA rehabilitation. The purpose of this study was to examine the knee joint biomechanics of TKA patients during stationary cycling. Fifteen TKA participants cycled at 80 revolutions per minute and workrates of 80 W and 100 W while kinematics (240 Hz) and pedal reaction forces using a pair of instrumented pedals (1200 Hz) were collected. A 2x2 (limb × workrate) repeated measures ANOVA was run with an alpha of 0.05. Peak knee extension moment (KEM, p = 0.034) and vertical pedal reaction force (p = 0.038) were significantly reduced in the replaced limbs compared to non-replaced limbs by 21.3% and 5.3%, respectively. Peak KEM did not change for TKA patients with the increased workrate (p = 0.750). However, both peak hip extension moment (p = 0.009) and ankle plantarflexion moment (p = 0.017) increased due to increased workrate. Patients following TKA showed similar decreases in peak KEM and vertical pedal reaction force in their replaced compared to non-replaced limbs, as previously seen in gait. Patients of TKA may rely on their hip and ankle extensors to increases in workrate. Increasing intensity by 20 W did not exacerbate any inter-limb differences for peak KEM and vertical PRF.


Assuntos
Artroplastia do Joelho , Fenômenos Biomecânicos , Marcha , Humanos , Joelho/cirurgia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular
17.
J Hum Kinet ; 73: 59-72, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32774538

RESUMO

In order to fully understand contact dynamics on a trampoline, a simulation approach using a musculoskeletal model coupled with a dynamic model of the trampoline is essential. The purpose of the study was to examine dynamics and selected lower extremity muscle forces in a landing and jumping movement on a trampoline, using a combination of finite element modeling and musculoskeletal modeling. The rigid frame of the trampoline was modeled in ADAMS and coupled with a finite element model of the elastic trampoline net surface in ANSYS. A musculoskeletal model of an elite trampoline athlete was further developed in LifeMod and combined with the finite element model of the trampoline. The results showed that the peak trampoline reaction forces (TRF) were 3400 N (6.6 BW) and 2900 N (5.6 BW) for the left and right limb, respectively. The right hip, knee and ankle joint reaction forces reached the maximum between 3000-4000 N (5.8 - 7.7 BW). The gluteus maximum and quadriceps reached the maximum muscle force of 380 N (0.7 BW) and 780 N (1.5 BW), respectively. Asymmetric loading patterns between left and right TRFs and lower extremities joint reaction forces were observed due to the need to generate the rotational movement during the takeoff. The observed rigid and erect body posture suggested that the hip and knee extensors played important roles in minimizing energy absorption and maximizing energy generation during the trampoline takeoff.

18.
J Appl Biomech ; 36(5): 292-297, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781436

RESUMO

The purpose of this study was to investigate effects of preferred step width and increased step width modification on knee biomechanics of obese and healthy-weight participants during incline and decline walking. Seven healthy-weight participants and 6 participants who are obese (body mass index ≥ 30) performed 5 walking trials on level ground and a 10° inclined and declined instrumented ramp system at both preferred and wide step-widths. A 2 × 2 (step-width × group) mixed-model analysis of variance was used to examine selected variables. There were significant increases in step-width between the preferred and wide step-width conditions for all 3 walking conditions (all P < .001). An interaction was found for peak knee extension moment (P = .048) and internal knee abduction moment (KAM) (P = .025) in uphill walking. During downhill walking, there were no interaction effects. As step-width increased, KAM was reduced (P = .007). In level walking, there were no interaction effects for peak medial ground reaction force and KAM (P = .007). There was a step-width main effect for KAM (P = .007). As step-width increased, peak medial ground reaction force and peak knee extension moment increased, while KAM decreased for both healthy weight and individuals who are obese. The results suggest that increasing step-width may be a useful strategy for reducing KAM in healthy and young populations.

19.
J Sport Health Sci ; 9(3): 258-264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32444150

RESUMO

BACKGROUND: Q-Factor (QF), or the inter-pedal width, in cycling is similar to step-width in gait. Although increased step-width has been shown to reduce peak knee abduction moment (KAbM), no studies have examined the biomechanical effects of increased QF in cycling at different workrates in healthy participants. METHODS: A total of 16 healthy participants (8 males, 8 females, age: 22.4 ± 2.6 years, body mass index: 22.78 ± 1.43 kg/m2, mean ± SD) participated. A motion capture system and customized instrumented pedals were used to collect 3-dimensional kinematic (240 Hz) and pedal reaction force (PRF) (1200 Hz) data in 12 testing conditions: 4 QF conditions-Q1 (15.0 cm), Q2 (19.2 cm), Q3 (23.4 cm), and Q4 (27.6 cm)-under 3 workrate conditions-80 watts (W), 120 W, and 160 W. A 3 × 4 (QF × workrate) repeated measures of analysis of variance were performed to analyze differences among conditions (p < 0.05). RESULTS: Increased QF increased peak KAbM by 47%, 56%, and 56% from Q1 to Q4 at each respective workrate. Mediolateral PRF increased from Q1 to Q4 at each respective workrate. Frontal-plane knee angle and range of motion decreased with increased QF. No changes were observed for peak vertical PRF, knee extension moment, sagittal plane peak knee joint angles, or range of motion. CONCLUSION: Increased QF increased peak KAbM, suggesting increased medial compartment loading of the knee. QF modulation may influence frontal-plane joint loading when using stationary cycling for exercise or rehabilitation purposes.


Assuntos
Ciclismo/fisiologia , Articulação do Joelho/fisiologia , Equipamentos Esportivos , Artralgia/fisiopatologia , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Masculino , Percepção/fisiologia , Esforço Físico/fisiologia , Amplitude de Movimento Articular , Estudos de Tempo e Movimento , Adulto Jovem
20.
Clin Biomech (Bristol, Avon) ; 71: 167-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765912

RESUMO

BACKGROUND: Osteoarthritis (OA) is a clinical problem affecting an estimated 27 million adults in the United States, with the only clear treatment options being pain management. Cycling is an integral component of exercise for individuals with knee osteoarthritis, while the joint reaction forces during cycling remain unknown. METHODS: Thirteen subjects with medial compartment knee osteoarthritis and eleven healthy subjects performed a cycling protocol with a neutral pedal and four pedal modifications. Six hundred muscle-actuated inverse-dynamic simulations (24 subjects, 5 trials in each of 5 conditions) were performed to estimate joint reaction force differences between conditions. FINDINGS: Subjects with knee osteoarthritis had many significant changes among them was a reduction in knee adduction-abduction moment by 45% (5° lateral wedge), 77% (10° lateral wedge), 54% (5° toe-in) and 58% (10° toe-in). Conversely the healthy subjects had no significant changes in the knee adduction-abduction moment for the lateral wedge conditions and the 5° toe-in but did decrease by 18% for the 10° toe-in condition. When comparing the cohorts across the different pedal conditions, the data showed many significant differences among the groups. INTERPRETATION: This study showed that while cycling in different pedal modifications, the knee osteoarthritis subjects had more beneficial changes in their knee adduction-abduction moment compared to the healthy subjects with the lateral-wedge modification resulting in the greatest impact on the subjects with knee osteoarthritis. Both groups had greater contact forces at the hip and ankle across pedal modifications compared to neutral. For the knee, subjects with osteoarthritis mostly decreased their knee contact forces but the healthy subjects mostly increased these forces with all pedal modifications.


Assuntos
Articulação do Tornozelo/fisiopatologia , Ciclismo , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/terapia , Estresse Mecânico , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Eletromiografia , Feminino , Pé/fisiopatologia , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA