Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906844

RESUMO

To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.

2.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136955

RESUMO

Reproductive traits hold considerable economic importance in pig breeding and production. However, candidate genes underpinning the reproductive traits are still poorly identified. In the present study, we executed a genome-wide association study (GWAS) and runs of homozygosity (ROH) analysis using the PorcineSNP50 BeadChip array for 585 Yorkshire pigs. Results from the GWAS identified two genome-wide significant and eighteen suggestive significant single nucleotide polymorphisms (SNPs) associated with seven reproductive traits. Furthermore, we identified candidate genes, including ELMO1, AOAH, INSIG2, NUP205, LYPLAL1, RPL34, LIPH, RNF7, GRK7, ETV5, FYN, and SLC30A5, which were chosen due to adjoining significant SNPs and their functions in immunity, fertilization, embryonic development, and sperm quality. Several genes were found in ROH islands associated with spermatozoa, development of the fetus, mature eggs, and litter size, including INSL6, TAF4B, E2F7, RTL1, CDKN1C, and GDF9. This study will provide insight into the genetic basis for pig reproductive traits, facilitating reproduction improvement using the marker-based selection methods.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Gravidez , Feminino , Suínos/genética , Masculino , Animais , Reprodução/genética , Homozigoto , Fenótipo
3.
Cyborg Bionic Syst ; 4: 0025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303861

RESUMO

The robot used for disaster rescue or field exploration requires the ability of fast moving on flat road and adaptability on complex terrain. The hybrid wheel-legged robot (WLR-3P, prototype of the third-generation hydraulic wheel-legged robot) has the characteristics of fast and efficient mobility on flat surfaces and high environmental adaptability on rough terrains. In this paper, 3 design requirements are proposed to improve the mobility and environmental adaptability of the robot. To meet these 3 requirements, 2 design principles for each requirement are put forward. First, for light weight and low inertia with high stiffness, 3-dimensional printing technology and lightweight material are adopted. Second, the integrated hydraulically driven unit is used for high power density and fast response actuation. Third, the micro-hydraulic power unit achieves power autonomy, adopting the hoseless design to strengthen the reliability of the hydraulic system. What is more, the control system including hierarchical distributed electrical system and control strategy is presented. The mobility and adaptability of WLR-3P are demonstrated with a series of experiments. Finally, the robot can achieve a speed of 13.6 km/h and a jumping height of 0.2 m.

4.
Animals (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37106959

RESUMO

The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.

5.
Appl Bionics Biomech ; 2022: 2233417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911608

RESUMO

Magnetic-driven capsule robot has been widely studied due to its advantages of safety and reliability. However, when doctors carry out clinical examination, the capsule robot cannot achieve the ideal control effect due to the influence of the external magnetic field air gap. This paper is based on the kinetic energy theorem, combined with the principle of spiral mechanism in mechanical design foundation to construct a calculation method of energy utilization and to improve the control effect of capsule robot, suitable for the human gastrointestinal tract precise control of capsule robot to perform a variety of complex tasks. By calculating the energy utilization rate of the capsule robot under the control of external magnetic field, the method can improve the energy utilization rate by improving the equation parameters, so that the capsule robot can run according to the doctor's ideal performance in practical application. Based on the analysis of the magnetic driven screw capsule robot, the model of the utilization rate of the external magnetic field of the capsule robot is established, and the fluid simulation of the capsule robot is carried out by using the method of computational fluid dynamics. The simulation results and experimental results show that the control effect of capsule robot can be improved by calculating the energy utilization rate of the robot, which is of great significance to human clinical examination and treatment.

6.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808273

RESUMO

This paper proposes a method to solve the problem of localization and mapping of a two-wheeled inverted pendulum (TWIP) robot on approximately flat ground using a Lidar-IMU-Odometer system. When TWIP is in motion, it is constrained by the ground and suffers from motion disturbances caused by rough terrain or motion shaking. Combining the motion characteristics of TWIP, this paper proposes a framework for localization consisting of a Lidar-IMU-Odometer system. This system formulates a factor graph with five types of factors, thereby coupling relative and absolute measurements from different sensors (including ground constraints) into the system. Moreover, we analyze the constraint dimension of each factor according to the motion characteristics of TWIP and propose a new nonholonomic constraint factor for the odometry pre-integration constraint and ground constraint factor in order to add them naturally to the factor graph with the robot state node on SE(3). Meanwhile, we calculate the uncertainty of each constraint. Utilizing such a nonholonomic constraint factor, a complete lidar-IMU-odometry-based motion estimation system for TWIP is developed via smoothing and mapping. Indoor and outdoor experiments show that our method has better accuracy for two-wheeled inverted pendulum robots.

7.
Micromachines (Basel) ; 13(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35334701

RESUMO

A nonlinear stiffness actuator (NSA) can achieve high torque/force resolution in the low stiffness range and high bandwidth in the high stiffness range. However, for the NSA, due to the imperfect performance of the elastic mechanical component such as friction, hysteresis, and unmeasurable energy consumption caused by former factors, it is more difficult to achieve accurate position control compared to the rigid actuator. Moreover, for a compliant robot with multiple degree of freedoms (DOFs) driven by NSAs, the influence of every NSA on the trajectory of the end effector is different and even coupled. Therefore, it is a challenge to implement precise trajectory control on a robot driven by such NSAs. In this paper, a control algorithm based on the Terminal Sliding Mode (TSM) approach is proposed to control the end effector trajectory of the compliant robot with multiple DOFs driven by NSAs. This control algorithm reduces the coupling of the driving torque, and mitigates the influence of parametric variation. The closed-loop system's finite time convergence and stability are mathematically established via the Lyapunov stability theory. Moreover, under the same experimental conditions, by the comparison between the Proportion Differentiation (PD) controller and the controller using TSM method, the algorithm's efficacy is experimentally verified on the developed compliant robot. The results show that the trajectory tracking is more accurate for the controller using the TSM method compared to the PD controller.

8.
Gels ; 8(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200516

RESUMO

Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein-polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein-polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein-polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.

9.
Crit Rev Food Sci Nutr ; 62(7): 1713-1724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33207917

RESUMO

Approximately 50% of the world population is infected with Helicobacter pylori. Antibiotics are widely used for H. pylori infection treatment but there are drawbacks, e.g., the emergence of antibiotic-resistant bacteria. Sialic acids are a family of acylated derivatives of a nine-carbon carboxylated monosaccharide. Because sialic acid of the host cells is vital to H. pylori pathogenesis, sialic acid-guided therapies have been proposed for the prevention and treatment of H. pylori infection, including anti-adhesive therapy and site-specific delivery. This review aims to shed light on the prospects of sialic acid-based strategies in the food industry for developing functional foods with potent anti-H. pylori activity. In this work, progress on the identification of sialic acid-containing components as anti-adhesive agents against H. pylori is reviewed. The current applications of sialic acid-based delivery systems in eradicating H. pylori are discussed, including microspheres, beads, hydrogels, and nanoparticles. The challenges and future perspectives of sialic acid-guided strategies and the possibility of their applications in food industry are highlighted. Antibiotic resistance is still a major challenge and the sialic acid-based technologies have tremendous potential to be utilized to develop functional foods that hold promise to be a future trend for preventing or treating H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antibacterianos/farmacologia , Indústria Alimentícia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/prevenção & controle , Humanos , Ácido N-Acetilneuramínico , Ácidos Siálicos
10.
Micromachines (Basel) ; 12(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34683261

RESUMO

Given that the current microrobot cannot achieve fixed-point and quantitative drug application in the gastrointestinal (GI) tract, a targeted drug delivery microrobot is proposed, and its principle and characteristics are studied. Through the control of an external magnetic field, it can actively move to the affected area to realize the targeted drug delivery function. The microrobot has a cam structure connected with a radially magnetized permanent magnet, which can realize two movement modes: movement and targeted drug delivery. Firstly, the magnetic actuated capsule microrobotic system (MACMS) is analyzed. Secondly, the dynamic model and quantitative drug delivery model of the targeted drug delivery microrobot driven by the spiral jet structure are established, and the motion characteristics of the targeted drug delivery microrobot are simulated and analyzed by the method of Computational Fluid Dynamics (CFD). Finally, the whole process of the targeted drug delivery task of the microrobot is simulated. The results show that the targeted drug delivery microrobot can realize basic movements such as forward, backward, fixed-point parking and drug delivery through external magnetic field control, which lays the foundation for gastrointestinal diagnosis and treatment.

11.
Appl Bionics Biomech ; 2020: 8854411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029197

RESUMO

Locomotion control for quadruped robots is commonly applied on rigid terrains with modelled contact dynamics. However, the robot traversing different terrains is more important for real application. In this paper, a single-leg prototype and a test platform are built. The Cartesian coordinates of the foot-end are obtained through trajectory planning, and then, the virtual polar coordinates in the impedance control are obtained through geometric transformation. The deviation from the planned and actual virtual polar coordinates and the expected force recognized by the ground compliance identification system are sent to the impedance controller for different compliances. At last, several experiments are carried out for evaluating the performance including the ground compliance identification, the foot-end trajectory control, and the comparison between pure position control and impedance control.

12.
J Agric Food Chem ; 68(43): 11954-11974, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32907328

RESUMO

Approximately 50-80% of the world population are infected with H. pylori, which is categorized as a class I carcinogen. Antiadhesive therapy is emerging as a promising alternative to antibiotics against bacterial infection. This study demonstrated that defatted wheat germ protein hydrolysates (DWGPH) effectively inhibited H. pylori adhesion to gastric epithelial cells. DWGPH prepared by pronase possessed the best activity where its inhibitory percentage at 10 mg/mL was 51.7 ± 6.8% and the minimum antiadhesive concentration was 0.31 mg/mL. The antiadhesive activity is attributable to peptides acting as receptor analogs in binding to H. pylori. Peptides with potential H. pylori-binding ability (n = 267) were identified, and their structural characteristics were comprehensively analyzed, including net charge, Boman index, instability index, aliphatic index, molecular weight, isoelectric point, hydrophobicity, and Hmoment (α-helix and ß-sheet). This work provided an array of peptide sequences for further exploration as putative ligands of H. pylori adhesins and for elucidating molecular mechanisms.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Triticum/química , Adesinas Bacterianas/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Humanos , Espectrometria de Massas , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia
13.
Sheng Wu Gong Cheng Xue Bao ; 34(12): 1874-1885, 2018 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-30584698

RESUMO

Various genetic switches have been developed to let engineered cells perform designed functions. However, a sustained input is often needed to maintain the on/off state, which is energy-consuming and sensitive to perturbation. Therefore, we developed a set of transcriptional switches for cell states control that were constructed by the inversion effect of site-specific recombinases on terminators. Such a switch could respond to a pulse signal and maintain the new state by itself until the next input. With a bottom-up design principle, we first characterized the terminators and recombinases. Then the mutual interference was studied to select compatible pairs, which were used to achieve one-time and two-time state transitions. Finally, we constructed a biological seven-segment display as a demonstration to prove such switch's immense potential for application.


Assuntos
Recombinases/metabolismo
14.
Micromachines (Basel) ; 9(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518087

RESUMO

The paper aims to propose a magnetic actuated capsule microrobotic system, which is composed of a magnetically actuated microrobot with a screw jet mechanism, a driving system, and a positioning system. The magnetically actuated microrobot embedded an O-ring magnet as an actuator has potential for achieving a particular task, such as medical diagnose or drug delivery. The driving system composes of a three axes Helmholtz coils to generate a rotational magnetic field for controlling the magnetically actuated microrobot to realize the basic motion in pipe, e.g., forward/backward motion and upward/downward motion. The positioning system is used to detect the pose of the magnetically actuated microrobot in pipe. We will discuss the shape of the Helmholtz coils and the magnetic field around the O-ring magnet to obtain an optimal performance of the magnetically actuated microrobot. The experimental result indicated that the microrobot with screw jet motion has a flexible movement in pipe by adjusting the rotational magnetic field plane and the magnetic field changing frequency.

15.
Micromachines (Basel) ; 10(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586885

RESUMO

According to the neuro-rehabilitation theory, compared with unilateral training, bilateral training is proven to be an effective method for hemiparesis, which affects the most part of stroke patients. In this study, a novel bilateral rehabilitation training system, which incorporates a lightweight exoskeleton device worn on the affected limb; a haptic device (Phantom Premium), which is used for generating a desired tactile feedback for the affected limb; and a VR (virtual reality) graphic interface, has been developed. The use of VR technology during rehabilitation can provide goal directed tasks with rewards and motivate the patient to undertake extended rehabilitation. This paper is mainly focused on elbow joint training, and other independent joints can be trained by easily changing the VR training interface. The haptic device is adopted to enable patients to use their own decision making abilities with a tactical feedback. Integrated with a VR-based graphic interface, the goal-oriented task can help to gradually recovery their motor function with a coordinative motion between two limbs. In particular, the proposed system can accelerate neural plasticity and motor recovery in those patients with little muscle strength by using the exoskeleton device. The exoskeleton device can provide from relatively high joint impedance to near-zero impedance, and can provide a partial assist as the patient requires.

16.
Appl Bionics Biomech ; 2018: 1391032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405746

RESUMO

As an important branch of medical robotics, a rehabilitation training robot for the hemiplegic upper limbs is a research hotspot of rehabilitation training. Based on the motion relearning program, rehabilitation technology, human anatomy, mechanics, computer science, robotics, and other fields of technology are covered. Based on an sEMG real-time training system for rehabilitation, the exoskeleton robot still has some problems that need to be solved in this field. Most of the existing rehabilitation exoskeleton robotic systems are heavy, and it is difficult to ensure the accuracy and real-time performance of sEMG signals. In this paper, we design a real-time training system for the upper limb exoskeleton robot based on the EMG signal. It has four main characteristics: light weight, portability, high precision, and low delay. This work includes the structure of the rehabilitation robotic system and the method of signal processing of the sEMG. An experiment on the accuracy and time delay of the sEMG signal processing has been done. In the experimental results, the recognition accuracy of the sEMG is 94%, and the average delay time is 300 ms, which meets the accuracy and real-time requirements.

17.
Stem Cell Res ; 19: 34-36, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28413002

RESUMO

Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Idoso , Doença de Alzheimer/metabolismo , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Masculino , Microscopia de Fluorescência , Vírus Sendai/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Sensors (Basel) ; 16(10)2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27775573

RESUMO

Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range.


Assuntos
Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Amplitude de Movimento Articular/fisiologia , Algoritmos , Mãos/fisiologia , Humanos , Músculo Esquelético/fisiologia
19.
Sensors (Basel) ; 15(5): 11511-27, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25996511

RESUMO

Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist-patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist's motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients' safety is guaranteed by monitoring the motor's current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients' safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication.


Assuntos
Fenômenos Biomecânicos/fisiologia , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral , Telemedicina/instrumentação , Adulto , Desenho de Equipamento , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...