Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2303113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877615

RESUMO

N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.


Assuntos
Sensibilização do Sistema Nervoso Central , Neuralgia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Regulação para Cima/genética
2.
Neurosci Bull ; 39(6): 947-961, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36637791

RESUMO

Effective treatments for neuropathic pain are lacking due to our limited understanding of the mechanisms. The circRNAs are mainly enriched in the central nervous system. However, their function in various physiological and pathological conditions have yet to be determined. Here, we identified circFhit, an exon-intron circRNA expressed in GABAergic neurons, which reduced the inhibitory synaptic transmission in the spinal dorsal horn to mediate spared nerve injury-induced neuropathic pain. Moreover, we found that circFhit decreased the expression of GAD65 and induced hyperexcitation in NK1R+ neurons by promoting the expression of its parental gene Fhit in cis. Mechanistically, circFhit was directly bound to the intronic region of Fhit, and formed a circFhit/HNRNPK complex to promote Pol II phosphorylation and H2B monoubiquitination by recruiting CDK9 and RNF40 to the Fhit intron. In summary, we revealed that the exon-intron circFhit contributes to GABAergic neuron-mediated NK1R+ neuronal hyperexcitation and neuropathic pain via regulating Fhit in cis.


Assuntos
Neuralgia , Células do Corno Posterior , Ratos , Animais , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Corno Dorsal da Medula Espinal/metabolismo , Transmissão Sináptica
3.
J Neuroinflammation ; 17(1): 310, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33070779

RESUMO

BACKGROUND: The major dose-limiting toxicity of paclitaxel, one of the most commonly used drugs to treat solid tumor, is painful neuropathy. However, the molecular mechanisms underlying paclitaxel-induced painful neuropathy are largely unclarified. METHODS: Paw withdrawal threshold was measured in the rats following intraperitoneal injection of paclitaxel. The qPCR, western blotting, protein or chromatin immunoprecipitation, ChIP-seq identification of NFATc2 binding sites, and microarray analysis were performed to explore the molecular mechanism. RESULTS: We found that paclitaxel treatment increased the nuclear expression of NFATc2 in the spinal dorsal horn, and knockdown of NFATc2 with NFATc2 siRNA significantly attenuated the mechanical allodynia induced by paclitaxel. Further binding site analysis utilizing ChIP-seq assay combining with gene expression profile revealed a shift of NFATc2 binding site closer to TTS of target genes in dorsal horn after paclitaxel treatment. We further found that NFATc2 occupancy may directly upregulate the chemokine CXCL14 expression in dorsal horn, which was mediated by enhanced interaction between NFATc2 and p300 and consequently increased acetylation of histone H4 in CXCL14 promoter region. Also, knockdown of CXCL14 in dorsal horn significantly attenuated mechanical allodynia induced by paclitaxel. CONCLUSION: These results suggested that enhanced interaction between p300 and NFATc2 mediated the epigenetic upregulation of CXCL14 in the spinal dorsal horn, which contributed to the chemotherapeutic paclitaxel-induced chronic pain.


Assuntos
Quimiocinas CXC/biossíntese , Epigênese Genética/efeitos dos fármacos , Fatores de Transcrição NFATC/biossíntese , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Paclitaxel/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Sequência de Bases , Quimiocinas CXC/genética , Epigênese Genética/fisiologia , Masculino , Fatores de Transcrição NFATC/genética , Neuralgia/genética , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Int J Neuropsychopharmacol ; 23(4): 257-267, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32124922

RESUMO

BACKGROUND: Although the action mechanism of antineoplastic agents is different, oxaliplatin, paclitaxel, or bortezomib as first-line antineoplastic drugs can induce painful neuropathy. In rodents, mechanical allodynia is a common phenotype of painful neuropathy for 3 chemotherapeutics. However, whether there is a common molecular involved in the different chemotherapeutics-induced painful peripheral neuropathy remains unclear. METHODS: Mechanical allodynia was tested by von Frey hairs following i.p. injection of vehicle, oxaliplatin, paclitaxel, or bortezomib in Sprague-Dawley rats. Reduced representation bisulfite sequencing and methylated DNA immunoprecipitation were used to detect the change of DNA methylation. Western blot, quantitative polymerase chain reaction, chromatin immunoprecipitation, and immunohistochemistry were employed to explore the molecular mechanisms. RESULTS: In 3 chemotherapeutic models, oxaliplatin, paclitaxel, or bortezomib accordantly upregulated the expression of transient receptor potential cation channel, subfamily C6 (TRPC6) mRNA and protein without affecting the DNA methylation level of TRPC6 gene in DRG. Inhibition of TRPC6 by using TRPC6 siRNA (i.t., 10 consecutive days) relieved mechanical allodynia significantly following application of chemotherapeutics. Furthermore, the downregulated recruitment of DNA methyltransferase 3 beta (DNMT3b) at paired box protein 6 (PAX6) gene led to the hypomethylation of PAX6 gene and increased PAX6 expression. Finally, the increased PAX6 via binding to the TPRC6 promoter contributes to the TRPC6 increase and mechanical allodynia following chemotherapeutics treatment. CONCLUSIONS: The TRPC6 upregulation through DNMT3b-mediated PAX6 gene hypomethylation participated in mechanical allodynia following application of different chemotherapeutic drugs.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Neuralgia/induzido quimicamente , Fator de Transcrição PAX6/efeitos dos fármacos , Canais de Cátion TRPC/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Neuralgia/complicações , Oxaliplatina/farmacologia , Paclitaxel/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
5.
Nat Commun ; 10(1): 4119, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511520

RESUMO

Circular RNAs are non-coding RNAs, and are enriched in the CNS. Dorsal horn neurons of the spinal cord contribute to pain-like hypersensitivity after nerve injury in rodents. Here we show that spinal nerve ligation is associated with an increase in expression of circAnks1a in dorsal horn neurons, in both the cytoplasm and the nucleus. Downregulation of circAnks1a by siRNA attenuates pain-like behaviour induced by nerve injury. In the cytoplasm, we show that circAnks1a promotes the interaction between transcription factor YBX1 and transportin-1, thus facilitating the nucleus translocation of YBX1. In the nucleus, circAnks1a binds directly to the Vegfb promoter, increases YBX1 recruitment to the Vegfb promoter, thereby facilitating transcription. Furthermore, cytoplasmic circAnks1a acts as a miRNA sponge in miR-324-3p-mediated posttranscriptional regulation of VEGFB expression. The upregulation of VEGFB contributes to increased excitability of dorsal horn neurons and pain behaviour induced by nerve injury. We propose that circAnks1a and VEGFB are regulators of neuropathic pain.


Assuntos
Hipersensibilidade/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , RNA Circular/genética , Medula Espinal/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Ratos Sprague-Dawley , Roedores , Corno Dorsal da Medula Espinal/metabolismo , Regulação para Cima/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo
6.
J Neuroinflammation ; 16(1): 29, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736806

RESUMO

BACKGROUND: Studies showed that upregulation of Nav1.6 increased the neuronal excitability and participated in neuropathic pain in the dorsal root ganglion (DRG). However, the molecular mechanisms underlying Nav1.6 upregulation were not reported yet. METHODS: The paw withdrawal threshold was measured in the rodents following lumbar 5 ventral root transection (L5-VRT). Then qPCR, western blotting, immunoprecipitation, immunohistochemistry, and chromatin immunoprecipitation assays were performed to explore the molecular mechanisms in vivo and in vitro. RESULTS: We found that the levels of Nav1.6 and phosphorylated STAT3 were significantly increased in DRG neurons following L5-VRT, and TNF-α incubation also upregulated the Nav1.6 expression in cultured DRG neurons. Furthermore, immunoprecipitation and chromatin immunoprecipitation assays demonstrated that L5-VRT increased the binding of STAT3 to the Scn8a (encoding Nav1.6) promoter and the interaction between STAT3 and p300, which contributed to the enhanced transcription of Scn8a by increasing histone H4 acetylation in Scn8a promoter in DRG. Importantly, intraperitoneal injection of the TNF-α inhibitor thalidomide reduced the phosphorylation of STAT3 and decreased the recruitment of STAT3 and histone H4 hyperacetylation in the Scn8a promoter, thus subsequently attenuating Nav1.6 upregulation in DRG neurons and mechanical allodynia induced by L5-VRT. CONCLUSION: These results suggested a new mechanism for Nav1.6 upregulation involving TNF-α/STAT3 pathway activation and subsequent STAT3-mediated histone H4 hyperacetylation in the Scn8a promoter region in DRG, which contributed to L5-VRT-induced neuropathic pain.


Assuntos
Epigênese Genética/genética , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/biossíntese , Neuralgia/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Animais , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Imuno-Histoquímica , Masculino , Neuralgia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais
7.
Sci Signal ; 11(523)2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588412

RESUMO

Palmitoylation of δ-catenin is critical to synapse plasticity and memory formation. We found that δ-catenin palmitoylation is also instrumental in the development of neuropathic pain. The abundances of palmitoylated δ-catenin and the palmitoyl acyltransferase DHHC3 were increased in dorsal root ganglion (DRG) sensory neurons in rat models of neuropathic pain. Inhibiting palmitoyl acyltransferases or decreasing δ-catenin abundance in the DRG by intrathecal injection of 2-bromopalmitate or shRNA, respectively, alleviated oxaliplatin or nerve injury-induced neuropathic pain in the rats. The palmitoylation of δ-catenin, which was induced by the inflammatory cytokine TNF-α, facilitated its interaction with the voltage-gated sodium channel Nav1.6 and the kinesin motor protein KIF3A, which promoted the trafficking of Nav1.6 to the plasma membrane in DRG neurons and contributed to mechanical hypersensitivity and allodynia in rats. These findings suggest that a palmitoylation-mediated KIF3A/δ-catenin/Nav1.6 complex enhances the transmission of mechanical and nociceptive signals; thus, blocking this mechanism may be therapeutic in patients with neuropathic pain.


Assuntos
Cateninas/metabolismo , Membrana Celular/metabolismo , Cinesinas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neuralgia/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Animais , Gânglios Espinais/citologia , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Lipoilação , Masculino , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Oxaliplatina , Palmitatos/administração & dosagem , Palmitatos/farmacologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , delta Catenina
8.
Exp Neurol ; 302: 104-111, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339053

RESUMO

Painful neuropathy, as a severe side effect of chemotherapeutic bortezomib, is the most common reason for treatment discontinuation. However, the mechanism by which administration of bortezomib leads to painful neuropathy remains unclear. In the present study, we found that application of bortezomib significantly increased the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and phosphorylated signal transducer and activator of transcription-3 (STAT3) in dorsal root ganglion (DRG). Intrathecal injection of NLRP3 siRNA significantly prevented the mechanical allodynia induced by bortezomib treatment, and intrathecal injection of recombinant adeno-associated virus vector encoding NLRP3 markedly decreased paw withdrawal threshold of naive rats. Furthermore, the expressions of p-STAT3 were colocalized with NLRP3-positive cells in DRG neurons, and inhibition of STAT3 by intrathecal injection of AAV-Cre-GFP into STAT3flox/flox mice or inhibitor S3I-201 suppressed the upregulation of NLRP3 and mechanical allodynia induced by bortezomib treatment. Chromatin immunoprecipitation further found that bortezomib increased the recruitment of STAT3, as well as the acetylation of histone H3 and H4, in the NLRP3 promoter region in DRG neurons. Importantly, inhibition of the STAT3 activity by using S3I-201 or DRG local deficiency of STAT3 also significantly prevented the upregulated H3 and H4 acetylation in the NLRP3 promoter region following bortezomib treatment. Altogether, our results suggest that the upregulation of NLRP3 in DRG via STAT3-dependent histone acetylation is critically involved in bortezomib-induced mechanical allodynia.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Histonas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Ácidos Aminossalicílicos/farmacologia , Animais , Benzenossulfonatos/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Transfecção
9.
J Neurophysiol ; 118(2): 1321-1328, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615337

RESUMO

Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 µm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain.NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain.


Assuntos
Gânglios Espinais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Dor Lombar/metabolismo , Aldeído Pirúvico/metabolismo , Animais , Humanos , Deslocamento do Disco Intervertebral/complicações , Dor Lombar/etiologia , Região Lombossacral/patologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Anesth ; 30(1): 55-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26373954

RESUMO

PURPOSE: Bortezomib (BTZ), a widely used chemotherapeutic drug, is closely associated with the development of painful peripheral neuropathy, but the mechanism underlying the induction of this disorder by BTZ remains largely unclear. To examine this association, we have evaluated the activation of mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn and the role of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) in BTZ-induced allodynia in rats. METHODS: Male Sprague-Dawley rats were used as the model animals. The paw withdrawal test, in which mechanical stimuli (von Frey hairs) is applied to the plantar surface of the hindpaw, was used to determine any changes in the paw withdrawal threshold of the treated rats. A PE-10 catheter was placed intrathecally to deliver TNF-α neutralizing antibody, IL-1 receptor antagonist (IL-1ra) or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. The mRNA levels of various cytokines were measured by real-time quantitative PCR. The expression of TNF-α, IL-1ß and mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn was measured by western blot analysis and immunohistochemistry. All data were expressed as the mean ± standard error of the mean and analyzed using the SPSS version 13.0 software program. RESULTS: The BTZ treatment induced an upsurge in the mRNA and protein levels of TNF-α in the neurons and IL-1ß in the astrocytes in the spinal dorsal horn. It also significantly upregulated the phosphorylation of JNK but not of extracellular signal-regulated kinases (ERK) and p38-MAPK in astrocytes of the spinal dorsal horn. Inhibition of TNF-α or IL-1ß ameliorated JNK activation and mechanical allodynia induced by BTZ. Co-administration of thalidomide (TNF-α synthesis inhibitor) and IL-1ra prevented BTZ-induced mechanical allodynia. CONCLUSION: Our results suggest that the TNF-α or IL-1ß/JNK pathway in the spinal dorsal horn may play a critical role in the development of painful peripheral neuropathy induced by BTZ.


Assuntos
Bortezomib/toxicidade , Hiperalgesia/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuralgia/induzido quimicamente , Animais , Citocinas/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...