Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475591

RESUMO

Wx is the key gene that controls amylose content (AC), and various alleles have been found in rice populations. Wxb is the major allele in japonica and produces moderate AC (15~18%). It was recently found that editing the promoter of Wx could produce a series of alleles that have different Wx activities. Although some studies have edited the promoter, few studies have focused on the natural variations in Wx. Here, we used the Rice3K database to investigate variations in the Wx promoter and found that the allele Wx1764178 (A/G) has a higher LD (linkage disequilibrium) with the two key SNPs (1765751, T/G; 1768006, A/C), which could produce different Wx alleles and influence AC, as reported previously. Further study showed that the Wx1764178 allele (A/G) is functional and influences the expression of Wx positively. Editing the A allele using CRISPR‒Cas9 produced 36 and 3 bp deletions and caused a decrease in the expression of Wx. The apparent amylose content (AAC) in the edited lines was decreased by 7.09% and 11.50% compared with that of the wild type, which was the japonica variety Nipponbare with Wxb and the A allele at 1764178, while a complementary line with the G allele showed a lower AAC than the A allele with no effect on other agronomic traits. The AAC of the edited lines showed a higher increase than that of the wild type (Nipponbare, Wxb) in low-nitrogen conditions relative to high-nitrogen conditions. We also developed a dCAPS marker to identify the allele and found that the G allele has widely been used (82.95%) in japonica-bred varieties from Jiangsu Province, China. Overall, we found a functional allele (Wx1764178, A/G) in the Wx promoter that could affect AAC in japonica cultivars and be developed as markers for quality improvement in rice breeding programs.

2.
Rice (N Y) ; 15(1): 48, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36152074

RESUMO

BACKGROUND: Breeding of conventional and hybrid rice (Oryza sativa L.) have solved hunger problems and increased farmers' income in the world. Molecular markers have been widely used in marker-assisted breeding and identification of larger numbers of different bred varieties in the past decades. The recently developed SNP markers are applied for more stable and detectable compared with other markers. But the cost of genotyping lots SNPs is high. So, it is essential to select less representative SNPs and inexpensive detecting methods to lower the cost and accelerate variety identification and breeding process. KASP (Kompetitive Allele-Specific PCR) is a flexible method to detect the SNPs, and large number of KASP markers have been widely used in variety identification and breeding. However, the ability of less KASP markers on massive variety identification and breeding remains unknown. RESULTS: Here, 48 KASP markers were selected from 378 markers to classify and analyze 518 varieties including conventional and hybrid rice. Through analyzing the population structure, the 48 markers could almost represent the 378 markers. In terms of variety identification, the 48 KASP markers had a 100% discrimination rate in 53 conventional indica varieties and 193 hybrid varieties, while they could distinguish 89.1% conventional japonica rice from different breeding institutes. Two more markers added would increase the ratio from 68.38 to 77.94%. Additionally, the 48 markers could be used for classification of subpopulations in the bred variety. Also, 8 markers had almost completely different genotypes between japonica and indica, and 3 markers were found to be very important for japonica hybrid rice. In hybrid varieties, the heterozygosity of chromosomes 3, 6 and 11 was relatively higher than others. CONCLUSIONS: Our results showed that 48 KASP markers could be used to identify rice varieties, and the panel we tested could provide a database for breeders to identify new breeding lines. Also, the specific markers we found were useful for marker-assisted breeding in rice, including conventional and hybrid.

3.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143673

RESUMO

In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.


Assuntos
Oryza , Doenças das Plantas , Alelos , Resistência à Doença/genética , Oryza/genética , Fenótipo , Doenças das Plantas/genética
4.
Proc Natl Acad Sci U S A ; 116(35): 17572-17577, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405986

RESUMO

Environmental conditions are key factors in the progression of plant disease epidemics. Light affects the outbreak of plant diseases, but the underlying molecular mechanisms are not well understood. Here, we report that the light-harvesting complex II protein, LHCB5, from rice is subject to light-induced phosphorylation during infection by the rice blast fungus Magnaporthe oryzae We demonstrate that single-nucleotide polymorphisms (SNPs) in the LHCB5 promoter control the expression of LHCB5, which in turn correlates with the phosphorylation of LHCB5. LHCB5 phosphorylation enhances broad-spectrum resistance of rice to M. oryzae through the accumulation of reactive oxidative species (ROS) in the chloroplast. We also show that LHCB5 phosphorylation-induced resistance is inheritable. Our results uncover an immunity mechanism mediated by phosphorylation of light-harvesting complex II.


Assuntos
Resistência à Doença/genética , Oryza/fisiologia , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Luz , Oryza/microbiologia , Fosforilação , Complexo de Proteína do Fotossistema II/metabolismo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
5.
Phytopathology ; 109(5): 870-877, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30501464

RESUMO

The Magnaporthe oryzae avirulence gene AvrPib is required for the resistance mediated by its cognate resistance gene Pib, which has been intensively used in indica rice breeding programs in many Asian countries. However, the sequence diversity of AvrPib among geographically distinct M. oryzae populations was recently shown to be increasing. Here, we selected a field population consisting of 248 rice blast isolates collected from a disease hotspot in Philippine for the analysis of AvrPib haplotypes and their pathogenicity against Pib. We found that all of the isolates were virulent to Pib and each of them contained an insertion of Pot3 transposon in AvrPib. Moreover, Pot3 insertion was detected in different genomic positions, resulting in three different AvrPib haplotypes, designated avrPib-H1 to H3. We further conducted a genome-wide Pot2 fingerprinting analysis by repetitive element palindromic polymerase chain reaction (PCR) and identified seven different lineages out of 47 representative isolates. The isolates belonging to the same lineage often had the same AvrPib haplotype. In contrast, the isolates having the same AvrPib haplotypes did not always belong to the same lineages. Both mating types MAT1-1 and MAT1-2 were identified in the population in Bohol and the latter appeared dominant. On the host side, we found that 32 of 52 released rice varieties in the Philippines contained Pib diagnosed by PCR gene-specific primers and DNA sequencing of gene amplicons, suggesting that it was widely incorporated in different rice varieties. Our study highlights the genetic dynamics of rice blast population at both the AvrPib locus and the genome-wide levels, providing insight into the mechanisms of the mutations in AvrPib leading to the breakdown of Pib-mediated resistance in rice.


Assuntos
Magnaporthe/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Resistência à Doença/genética , Variação Genética , Magnaporthe/patogenicidade , Mutagênese Insercional , Oryza/genética , Filipinas , Doenças das Plantas/genética , Virulência
6.
Plant Cell Rep ; 37(5): 775-787, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29427065

RESUMO

KEY MESSAGE: RTD1 encodes a homogentisate phytyltransferase catalyzing a key step in rice tocopherol biosynthesis, confers cold tolerance and regulates rice development by affecting the accumulation of DELLA protein SLENDER RICE1. Tocopherols are one of the most important lipid-soluble antioxidants having indispensable roles in living organisms. The physiological functions of tocopherols have been comprehensively characterized in animals and artificial membranes. However, genetic and molecular functions of tocopherols in plants are less understood. This study aimed to isolate a tocopherol-deficient mutant rtd1 in rice. The rtd1 mutant showed overall growth retardation throughout the growth period. Most of the agronomic traits were impaired in rtd1. Map-based cloning revealed that the RTD1 gene encoded a homogentisate phytyltransferase, a key enzyme catalyzing the committed step in tocopherol biosynthesis. RTD1 was preferentially expressed in green leafy tissues, and the protein was located in chloroplasts. Cold tolerance was found to be reduced in rtd1. The cold-related C-repeat-binding factor (CBF)/dehydration-responsive element-binding protein 1 (DREB1) genes were significantly upregulated in rtd1 under natural growth conditions. Moreover, rtd1 exhibited a reduced response to gibberellin (GA).The transcript and protein levels of DELLA protein-coding gene SLENDER RICE 1 (SLR1) in rice was increased in rtd1. However, the GA content was not changed, suggesting a transcriptional, not posttranslational, regulation of SLR1. These findings implied that tocopherols play important roles in regulating rice growth and development.


Assuntos
Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Tocoferóis/metabolismo , Adaptação Fisiológica , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Sequência de Bases , Vias Biossintéticas/genética , Cloroplastos/metabolismo , Clonagem Molecular , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Giberelinas/metabolismo , Luz , Mutação/genética , Oryza/genética , Fenótipo , Filogenia , Mapeamento Físico do Cromossomo , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Interferência de RNA , Transdução de Sinais
7.
J Genet Genomics ; 36(2): 117-23, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19232310

RESUMO

Green-revertible albino is a novel type of chlorophyll deficiency in rice (Oryza sativa L.), which is helpful for further research in chlorophyll synthesis and chloroplast development to illuminate their molecular mechanism. In the previous study, we had reported a single recessive gene, gra(t), controlling this trait on the long arm of chromosome 2. In this paper, we mapped the gra(t) gene using 1,936 recessive individuals with albino phenotype in the F(2) population derived from the cross between themo-photoperiod-sensitive genic male-sterile (T/PGMS) line Pei'ai 64S and the spontaneous mutant Qiufeng M. Eventually, it was located to a confined region of 42.4 kb flanked by two microsatellite markers RM2-97 and RM13553. Based on the annotation results of RiceGAAS system, 11 open reading frames (ORFs) were predicted in this region. Among them, ORF6 was the most possible gene related to chloroplast development, which encoded the chloroplast protein synthesis elongation factor Tu in rice. Therefore, we designated it as the candidate gene of gra(t). Sequence analysis indicated that only one base substitution C to T occurred in the coding region, which caused a missense mutation (Thr to Ile) in gra(t) mutant. These results are very valuable for further study on gra(t) gene.


Assuntos
Mapeamento Cromossômico , Oryza/genética , Fator Tu de Elongação de Peptídeos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Clorofila/deficiência , Cloroplastos/genética , Cloroplastos/metabolismo , Cor , Cruzamentos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fases de Leitura Aberta , Oryza/química , Oryza/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
8.
J Genet Genomics ; 34(4): 331-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17498631

RESUMO

A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color became pale green since the fourth leaf and the glume had the same phenomenon as the first three leaves. The measuring data of the pigment content confirmed the visually observed results. It truly had a remarkable changing process in the leaf color in Qiufeng M. Comparison of the main agronomic characters between Qiufeng and Qiufeng M indicated that the neck length and grain weight showed significant difference at the 1% level, and other characters were not different. Genetic analysis showed that the green-revertible albino trait was controlled by a single recessive nucleic gene. Using 209 recessive mutant individuals in the F(2) population derived from the cross Pei'ai 64S x Qiufeng M, a gene, tentatively named gra((t)), was located between the SSR markers of RM475 and RM2-22 on the long arm of chromosome 2. The genetic distance were 17.3 cM and 2.9 cM respectively.


Assuntos
Mapeamento Cromossômico , Genes de Plantas/genética , Mutação , Oryza/genética , Oryza/fisiologia , Pigmentação/genética , Sequência de Bases , Cruzamento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Repetições de Microssatélites/genética , Oryza/crescimento & desenvolvimento , Temperatura
9.
Yi Chuan ; 29(3): 365-70, 2007 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-17369161

RESUMO

Sex determination is a complex regulatory process of early embryogenesis. Embryo must make a developmental decision to develop as a male or female during gonadogenesis. This paper reviews genetic systems of sex determination, gonadogenesis, key genes involved in sex determination of vertebrates. Molecular evolution processes of sex chromosomes and sex determination provide a clue to tendency of sex-determining genes to appear on heterotypic sex chromosome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Ligação Genética/genética , Oryza/genética , Processos de Determinação Sexual , Cromossomos de Plantas , Genoma de Planta , Repetições de Microssatélites/genética , Mapeamento Físico do Cromossomo , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...