Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696244

RESUMO

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Assuntos
Cromo , Hidróxidos , Ferro , Hidróxidos/química , Ferro/química , Cromo/química , Soroalbumina Bovina/química , Adsorção , Substâncias Húmicas , Água/química , Precipitação Química , Alginatos/química
2.
Acc Chem Res ; 57(9): 1254-1263, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38488208

RESUMO

ConspectusThe heterogeneous coprecipitation of nanocrystals with metals on substrates plays a significant role in both natural and engineered systems. Due to the small dimensions and thereby the large specific surface area, nanocrystal coprecipitation with metals, which is ubiquitous in natural settings, exerts drastic effects on the biogeochemical cycling of metals on the earth's crust. Meanwhile, the controlled synthesis of nanocrystals with metal doping to achieve tunable size/composition enables their broad applications as adsorbents and catalysts in many engineered settings. Despite their importance, complex interactions among aqueous ions/polymers, nanocrystals, substrates, and metals are far from being well-understood, leaving the controlling mechanisms for nanocrystal formation with metals on substrates uncovered.In this Account, we discuss our systematic investigation over the past 10 years of the heterogeneous formation of representative nanocrystals with metals on typical substrates. We chose Fe(OH)3 and BaSO4 as representative nanocrystals. Mechanisms for varied metal coprecipitation were also investigated for both types of nanocrystals (i.e., Fe, Al, Cr, Cu, and Pb)(OH)3 and (Ba, Sr)(SO4, SeO4, and SeO3)). Bare SiO2 and Al2O3, as well as those coated with varied organics, were selected as geologically or synthetically representative substrates. Through the integration of state-of-the-art nanoscale interfacial characterization techniques with theoretical calculations, the complex interactions during nanocrystal formation at interfaces were probed and the controlling mechanisms were identified.For BaSO4 and Fe(OH)3 formation on substrates, the local supersaturation levels near substrates were controlled by Ba2+ adsorption and the electrostatic attraction of Fe(OH)3 monomer/polymer to substrates, respectively. Meanwhile, substrate hydrophobicity controlled the interfacial energy for the nucleation of both nanocrystals on (in)organic substrates. Metal ions' (i.e., Cr/Al/Cu/Pb) hydrolysis constants and substrates' dielectric constants controlled metal ion adsorption onto substrates, which altered the surface charges of substrates, thus controlling heterogeneous Fe(OH)3 nanocrystal formation on substrates by electrostatic interactions. The sizes and compositions of heterogeneous (Fe, Cr)(OH)3 and (Ba, Sr)(SO4, SeO4, SeO3) formed on substrates were found to be distinct from those of homogeneous precipitates formed in solution. The substrate (de)protonation could alter the local solution's pH and the substrates' surface charge; substrates could also adsorb cations, affecting local Fe/Cr/Ba/Sr ion concentrations at solid-water interfaces, thus controlling the amount/size/composition of nanocrystals by tuning their nucleation/growth/deposition on substrates. From slightly supersaturated solution, homogeneous coprecipitates of microsized (Ba, Sr)(SO4, SeO4, SeO3) formed through growth, with little Sr/Se(VI) incorporation due to higher solubilities of SrSO4 and BaSeO4 over BaSO4. While cation enrichment near substrates made the local solution highly supersaturated, nanosized coprecipitates formed on substrates through nucleation, with more Sr/Se(VI) incorporation due to lower interfacial energies of SrSO4 and BaSeO4 over BaSO4. The new insights gained advanced our understanding of the biogeochemical cycling of varied elements at solid-water interfaces and of the controlled synthesis of functional nanocrystals.

3.
Environ Sci Technol ; 57(19): 7516-7525, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130379

RESUMO

The simultaneous precipitation of (Fe, Cr)(OH)3 nanoparticles in solution (homogeneous) and on soil surfaces (heterogeneous), which controls Cr transport in soil and aquatic systems, was quantified for the first time in the presence of model surfaces, i.e., bare and natural organic matter (NOM)-coated SiO2 and Al2O3. Various characterization techniques were combined to explore the surface-ion-precipitate interactions and the controlling mechanisms. (Fe, Cr)(OH)3 accumulation on negatively charged SiO2 was mainly governed by electrostatic interactions between hydrolyzed ion species or homogeneous (Fe, Cr)(OH)3 and surfaces. The elevated pH through protonation of Al2O3 surface hydroxyls resulted in higher Cr/Fe ratios in both homogeneous and heterogeneous coprecipitates. Due to ignorable NOM adsorption onto SiO2, the amounts of (Fe, Cr)(OH)3 precipitates on bare/NOM-SiO2 were similar; contrarily, attributed to favored NOM adsorption onto Al2O3 and consequently carboxyl association with metal ions or (Fe, Cr)(OH)3 nanoparticles, remarkably more heterogeneous precipitates harvested on NOM-Al2O3 than bare-Al2O3. With the same solution supersaturation, the total amounts of homogeneous and heterogeneous precipitates were similar irrespective of the substrate type. With lower pH, decreased electrostatic forces between substrates and precipitates shifted (Fe, Cr)(OH)3 distribution from heterogeneous to homogeneous phases. The quantitative knowledge of (Fe, Cr)(OH)3 distribution and the controlling mechanisms can assist in better Cr sequestration in natural and engineered settings.


Assuntos
Nanopartículas , Solo , Dióxido de Silício , Metais , Nanopartículas/química , Concentração de Íons de Hidrogênio , Adsorção
4.
Sci Total Environ ; 842: 156959, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760171

RESUMO

The ubiquitously present dissolved organic matter (DOM) greatly influence the efficiency of UV-based technologies due to its reactivity to UV irradiation. In this work, UV-induced changes within three hydrophobic DOM fractions isolated from different surface waters were investigated. Analysis on UV absorbance at 254 nm, electron donating capacity, fluorescence intensity and carbon content revealed small changes in DOM bulk properties associated with the UV-induced photochemical reactions. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was further used to explore the modification of the molecular distribution based on H/C and O/C ratios, m/z and DBE. The molecular-level investigation revealed that an average of 296 aromatic and lignin-like molecules were degraded, leading to the production of around 306 new molecules. The UV-reactive community were identified as CHO molecules with higher DBE (>10) and carbon number (>25) which could be readily transformed into smaller saturated molecules. Molecules containing nitrogen (N) or sulfur (S) atom, independent of aromaticity and molecular weight (m/z), were also highly UV susceptible and transformed into molecules with larger DBE and m/z. Possible reaction pathways responsible for the observations were discussed. The results indicated that UV-reactivity and subsequent transformation of DOM are remarkably correlated with its molecular composition and characteristics. Though the changes in bulk properties of DOM following UV irradiation were observed to be very small, the significant alteration in its molecular structures would have a profound impact on the UV-based treatment processes.


Assuntos
Carbono , Matéria Orgânica Dissolvida , Carbono/análise , Espectrometria de Massas , Peso Molecular , Nitrogênio/análise
5.
Water Res ; 163: 114846, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31306939

RESUMO

Sulfate radical (SO4•-) has been extensively studied as a promising alternative in advanced oxidation processes (AOPs) for water treatment. However, little is known about its reactivity to the ubiquitous dissolved organic matter (DOM) in water bodies. SO4•- would selectively react with electron rich moieties in DOM, known as chromophoric DOM (CDOM), due to its light absorbing property. In this study, the reactivity and typical structural transformation of CDOM with SO4•- was investigated. Four well characterized hydrophobic DOM fractions extracted from different surface water sources were selected as model CDOM. SO4•- was produced through the activation of peroxymonosulfate (PMS) by Co(II) ions at pH 8 in borate buffer. The reactivity of CDOM was studied based on the decrease in its ultraviolet absorbance at 254 nm (UVA254) as a function of time. The reactivity of CDOM changed with time where fast and slow reacting CDOMs (i.e., CDOMfast and CDOMslow) were clearly distinguished. A second-order rate constant of CDOMfast with SO4•- was calculated by plotting UVA254 decrease versus PMS exposure; where a Rct value (i.e., ratio of sulfate radical exposure to PMS exposure) was calculated using pCBA as a probe compound. The transformation of CDOM was studied through the analysis of the changes in UVA254, electron donating capacity, fluorescence intensity, and total organic carbon. A transformation pathway leading to a significant carbon removal was proposed. This new knowledge on the kinetics and transformation of CDOM would ultimately assist in the development and operation of SO4•--based water treatment processes.


Assuntos
Sulfatos , Purificação da Água , Água Doce , Cinética
6.
J Environ Sci (China) ; 73: 38-46, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290870

RESUMO

The effects of O3/Cl2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors (ARs). The corrosion process and most probable number (MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O3/Cl2 induced higher Fe3O4 formation in corrosion scales. These corrosion scales became more stable than the ones that formed in the AR treated with Cl2 alone. O3/Cl2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria. Moreover, ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties. The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection. Compared with the AR treated with Cl2 alone, the opportunistic pathogens M. avium and L. pneumophila were not detectable in effluents of the AR treated with O3/Cl2, and decreased to (4.60±0.14) and (3.09±0.12) log10 (gene copies/g corrosion scales) in biofilms, respectively. The amoeba counts were also lower in the AR treated with O3/Cl2. Therefore, O3/Cl2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.


Assuntos
Cloro/química , Corrosão , Desinfecção/métodos , Água Potável/microbiologia , Ozônio/química , Microbiologia da Água , Água Potável/química , Purificação da Água/métodos
7.
Chemosphere ; 209: 950-959, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30114745

RESUMO

The influence of dissolved organic matter (DOM) properties on its interfacial interactions with MnO2 and on catalytic oxidation processes was studied by Time-Resolved Dynamic Light Scattering (TR-DLS) and Atomic Force Microscopy (AFM) under varied solution conditions. Four DOM fractions of different characteristics (e.g., SUVA, hydrophobic character, structural properties) were selected. Bared-MnO2 nanoparticles readily aggregated in NaCl and CaCl2 solutions. Classic DLVO Theory successfully described critical coagulation concentrations and aggregation behaviors. In NaCl solution, DOM adsorbed on MnO2 nanoparticles and provided electrosteric stabilization. The two DOM fractions of higher hydrophobic (HPO) character were more efficient in decreasing the aggregation rates. Enhanced MnO2 aggregation was observed at high Ca2+ concentrations due to charge screening and cation bridging between carboxyl groups in DOM structures. The addition of oxidant (H2O2) induced a high aggregation of bared-MnO2 nanoparticles, possibly due to the release of Mn2+ (i.e., complexation mechanisms) and generation of reactive species (O2-, HO2-, and H). Contrasted with their hydrophilic (HPI) counterparts, HPO isolates adsorbed on MnO2 significantly decreased the catalytic oxidation processes between H2O2/MnO2; suggesting a more efficient and stronger DOM coating. Interfacial forces measured by AFM, showed weaker interactions between HPI isolates and MnO2; suggesting unfavorable polar interactions. Conversely, the high adhesion forces between MnO2/HPO isolate would indicate stronger bonds and hydrophobic interactions. This study provided a nanoscale understanding of the impact of DOM characteristics on: a) performance of the MnO2 coated ceramic membranes in water treatment, and b) biogeochemical cycle of Mn-oxides in the environmental.


Assuntos
Compostos de Manganês/química , Óxidos/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...