Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 19: 100547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896415

RESUMO

Circadian rhythm (CR) disruption contributes to tumor initiation and progression, however the pharmacological targeting of circadian regulators reversely inhibits tumor growth. Precisely controlling CR in tumor cells is urgently required to investigate the exact role of CR interruption in tumor therapy. Herein, based on KL001, a small molecule that specifically interacts with the clock gene cryptochrome (CRY) functioning at disruption of CR, we fabricated a hollow MnO2 nanocapsule carrying KL001 and photosensitizer BODIPY with the modification of alendronate (ALD) on the surface (H-MnSiO/K&B-ALD) for osteosarcoma (OS) targeting. The H-MnSiO/K&B-ALD nanoparticles reduced the CR amplitude in OS cells without affecting cell proliferation. Furthermore, nanoparticles-controlled oxygen consumption by inhibiting mitochondrial respiration via CR disruption, thus partially overcoming the hypoxia limitation for photodynamic therapy (PDT) and significantly promoting PDT efficacy. An orthotopic OS model demonstrated that KL001 significantly enhanced the inhibitory effect of H-MnSiO/K&B-ALD nanoparticles on tumor growth after laser irradiation. CR disruption and oxygen level enhancement induced by H-MnSiO/K&B-ALD nanoparticles under laser irradiation were also confirmed in vivo. This discovery first demonstrated the potential of CR controlling for tumor PDT ablation and provided a promising strategy for overcoming tumor hypoxia.

2.
Heliyon ; 9(3): e14471, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967962

RESUMO

This study investigates how proxy solicitation and director ownership jointly affect directors' career consequences in Taiwan. We report that assent votes partly arising from proxies without shareholder voice increase the likelihood of departure for directors with higher ownership in firms soliciting proxies, especially for busy directors. Since proxy votes do not build extra reputation, this generates no spillover effect for both non-busy and busy directors. Overall, we support the arguments based on prior studies that votes holding information on shareholder voice have implications on directors' careers. Furthermore, different board seats provide unequal incentives for busy directors.

3.
Bioact Mater ; 22: 1-17, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36203961

RESUMO

The electrical microenvironment plays an important role in bone repair. However, the underlying mechanism by which electrical stimulation (ES) promotes bone regeneration remains unclear, limiting the design of bone microenvironment-specific electroactive materials. Herein, by simple co-incubation in aqueous suspensions at physiological temperatures, biocompatible regenerated silk fibroin (RSF) is found to assemble into nanofibrils with a ß-sheet structure on MXene nanosheets, which has been reported to inhibit the restacking and oxidation of MXene. An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration. This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer, which can potentially be utilized to monitor the electrophysiological microenvironment. RNA sequencing is performed to explore the underlying mechanisms, which can activate Ca2+/CALM signaling in favor of the direct osteogenesis process. ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages, as well as stimulating the neogenesis and migration of endotheliocytes. Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo. Collectively, the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis, regulating immune microenvironment and neovascularization under ES, leading to re-establish electrical microenvironment for bone regeneration.

5.
Biomaterials ; 282: 121407, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35217343

RESUMO

Poor immunogenicity and compromised T cell infiltration impede the application of immune-checkpoint blockade (ICB) immunotherapy for osteosarcoma (OS). Although autophagy is involved in enhancing the immune response, the synergistic role of autophagy in ICB immunotherapy and the accurate control of autophagy levels in OS remain elusive and challenging. Here, we designed a pH-sensitive autophagy-controlling nanocarrier, CUR-BMS1166@ZIF-8@PEG-FA (CBZP), loading a natural derivative, curcumin (CUR), to boost the immunotherapeutic response of PD-1/PD-L1 blockade by activating immunogenic cell death (ICD) via autophagic cell death, and BMS1166 to inhibit the PD-1/PD-L1 interaction simultaneously, enhancing the tumor immunogenicity and sensitizing the antitumor T cell immunity. After entering tumor cells, the pH-sensitive nanoparticles induced autophagy and decreased the intracellular pH, which in turn further facilitated the release of CUR to enhance autophagic activity. Transferring CBZP to orthotopic OS tumor-bearing mice showed powerful antitumor effects and established long-term immunity against tumor recurrence, accompanied by enhanced dendritic cell maturation and tumor infiltration of CD8+ T lymphocytes. Collectively, CBZP exhibited synergistic effects in treating OS by combining ICD induction with checkpoint blockade, thereby shedding light on the use of autophagy control as a potential clinical therapy for OS.


Assuntos
Neoplasias Ósseas , Estruturas Metalorgânicas , Osteossarcoma , Animais , Autofagia , Antígeno B7-H1/metabolismo , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Osteossarcoma/terapia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
6.
Exp Mol Med ; 53(12): 1911-1923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34934193

RESUMO

Night shift workers with disordered rhythmic mechanical loading are more prone to intervertebral disc degeneration (IDD). Our results showed that circadian rhythm (CR) was dampened in degenerated and aged NP cells. Long-term environmental CR disruption promoted IDD in rats. Excessive mechanical strain disrupted the CR and inhibited the expression of core clock proteins. The inhibitory effect of mechanical loading on the expression of extracellular matrix genes could be reversed by BMAL1 overexpression in NP cells. The Rho/ROCK pathway was demonstrated to mediate the effect of mechanical stimulation on CR. Prolonged mechanical loading for 12 months affected intrinsic CR genes and induced IDD in a model of upright posture in a normal environment. Unexpectedly, mechanical loading further accelerated the IDD in an Light-Dark (LD) cycle-disrupted environment. These results indicated that intrinsic CR disruption might be a mechanism involved in overloading-induced IDD and a potential drug target for night shift workers.


Assuntos
Ritmo Circadiano , Suscetibilidade a Doenças , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/metabolismo , Estresse Mecânico , Fatores Etários , Animais , Biomarcadores , Sobrevivência Celular , Senescência Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética , Masculino , Radiografia , Ratos , Resistência à Tração
7.
Ann Transl Med ; 9(17): 1376, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733928

RESUMO

BACKGROUND: Exosomes may contain excess cellular components released by cells in response to harmful external stimuli to maintain cellular homeostasis. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), can induce cell apoptosis, alter cellular component expression levels, and stimulate exosome release. In this study, we examined whether exosomes released from nucleus pulposus cells (NPCs) under inflammatory conditions could induce normal NP cell apoptosis in rats and its underlining mechanism. METHODS: Exosomes were isolated from TNF-α-treated NPCs and used to treat normal NPCs. The effects were assessed by flow cytometry and western blot analysis. Anti-apoptotic insulin-like growth factor-1 (IGF-1) expression in NPCs was assessed by western blot analysis. Given the exosomal miRNAs might be the key factors of exosomes, bioinformatics approaches and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify IGF-1-regulating micro RNAs (miRNAs), including miR-16. Luciferase reporter assay assessed miR-16 regulation of IGF-1 and IGF-1 receptor (IGF-1R). NPCs were transfected with miR-16 mimic, and exosomes were applied to normal NPCs. NPCs were pretreated with 10 ng/mL TNF-α, transfected with miR-16 inhibitors, and the exosomes were isolated. Cell and exosome miR-16 levels were detected by qRT-PCR. Western blot analysis determined IGF-1, IGF-1R, and apoptotic marker levels in exosome-treated NPCs. RESULTS: Exosomes from TNF-α-treated NPCs induced apoptosis in normal NPCs and repressed IGF-1 expression. Exosomal miR-16 regulated IGF-1 and induced NPC apoptosis. The dual-luciferase reporter assay revealed that miR-16 binds the 3' untranslated regions (3'-UTRs) of IGF-1 and IGF-1R. Exosomal miR-16 repressed IGF-1 and the IGF-1R/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway which therefore induced NPC apoptosis. Rescue experiments using miR-16 inhibitors further validated these findings. CONCLUSIONS: The inflammatory factor TNF-α stimulated exosome release from NPCs, which induced the apoptosis of normal NPCs through the actions of exosomal miR-16. Exosomal miR-16 directly repressed the anti-apoptotic IGF-1/IGF-1R pathway, increasing the apoptosis of NPCs.

8.
J Orthop Res ; 39(8): 1777-1788, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33034924

RESUMO

Decorin (Dcn) is a member of the class I small leucine-rich proteoglycans, whose expression in the nucleus pulposus (NP) of intervertebral discs (IVDs) has been shown to increase with aging in humans and sheep. Dcn induces autophagy in endothelial cells; however, its precise role in NP and IVD degeneration during aging is not well understood. We addressed this question in the present study by treating rat nucleus pulposus cells (NPCs) with different concentrations of Dcn. The Western blot analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling assay results showed that Dcn treatment induced autophagy and decreased apoptosis caused by interleukin (IL)-1ß application. This effect was dependent on the protein kinase B/mechanistic target of rapamycin (mTOR)/p70 S6 kinase signaling. Dcn treatment also decreased the expression of matrix metalloproteinase-3 and -13 and decreased the IL-1ß-induced attenuation of collagen type II and aggrecan levels. The role of Dcn in stimulating autophagy was further supported by the fact that the observed effects were abrogated by knocking down autophagy-related protein 7 with Atg7 small interfering RNA. Thus, Dcn protects NPCs in IVDs from IL-1ß-induced apoptosis and degeneration by promoting autophagy through mTOR signaling.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Apoptose , Autofagia/fisiologia , Decorina , Células Endoteliais , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Ratos , Ovinos , Serina-Treonina Quinases TOR/metabolismo
9.
J Orthop Res ; 39(9): 1921-1932, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33038032

RESUMO

Although autophagy may be beneficial for maintaining the metabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) and its vitality under inflammation, the underlying mechanism still remains unclear. A previous study found that autophagy activation stimulated the release of exosomes in normal chondrocytes, which are located in a similar avascular environment and share many common features with those of nucleus pulposus cells (NPCs). This study explored the protective effect on matrix degradation in the NP by exosomes derived from autophagy-activated NPCs and exosomal microRNAs. NPCs-derived exosomes (NPCs-Exos) were isolated from culture medium of either normal NPCs or rapamycin-treated NPCs and quantified by nanoparticle tracking analysis. The effect of rapamycin-treated NPC-derived exosomes on NPCs were assessed by coculture with interleukin 1ß (IL-1ß)-stimulated NPCs. After examination of six major proteinases of the ECM, matrix metalloproteinase 13 (MMP-13) was chosen for further study. miR-27a, which targets MMP-13, was investigated through previous studies and bioinformatics tool. The levels of miR-27a were upregulated in both rapamycin-treated NPCs and their exosomes, compared to the control. When exosomal miR-27a was transferred into NPCs, it alleviated IL-1ß-induced degradation of the NPC ECM by targeting MMP-13. Autophagy activation may promote the release of NPCs-derived exosomes and thereby prevent the NPC matrix from degradation. Autophagy activation also alleviates intervertebral disc degeneration (IDD), at least partly via exosomal miR-27a, which restrains MMP-13 expression under IL-1ß stimulation. Our work elucidates a new mechanism for how autophagy may participate in preventing IDD, which may be a promising therapeutic strategy.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Autofagia , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Sirolimo/farmacologia
10.
Exp Mol Med ; 52(1): 31-40, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31983731

RESUMO

There is one circadian clock in the central nervous system and another in the peripheral organs, and the latter is driven by an autoregulatory molecular clock composed of several core clock genes. The height, water content, osmotic pressure and mechanical characteristics of intervertebral discs (IVDs) have been demonstrated to exhibit a circadian rhythm (CR). Recently, a molecular clock has been shown to exist in IVDs, abolition of which can lead to stress in nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IDD). Autophagy is a fundamental cellular process in eukaryotes and is essential for individual cells or organs to respond and adapt to changing environments; it has also been demonstrated to occur in human NPCs. Increasing evidence supports the hypothesis that autophagy is associated with CR. Thus, we review the connection between CR and autophagy and the roles of these mechanisms in IDD.


Assuntos
Autofagia/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Degeneração do Disco Intervertebral/fisiopatologia , Animais , Humanos , Núcleo Pulposo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...