Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490542

RESUMO

The development of new drug therapies for Alzheimer's disease (AD) is an important research topic today, but the pathogenesis of AD has not been thoroughly studied, and there are still several shortcomings in existing drug therapies. Therefore, this study aims to explore the molecular mechanism of lactoferrin in the treatments of AD and ulcerative colitis (UC) which are susceptible to AD, starting from the principle of "one drug, two diseases, and the same treatment." This study used pathological staining and specific indicators staining to preliminarily evaluate the interventions of lactoferrin on UC injury and AD progression. And 16s RNA full-length sequencing was used to investigate the effect of lactoferrin on the abundance of intestinal microbiota in AD mice. Then, intestinal tissue and brain tissue metabolomics analysis were used to screen specific metabolic pathways and preliminarily verify the metabolic mechanism of lactoferrin in alleviating 2 diseases by regulating certain specific metabolites. Moreover, lactoferrin significantly changed the types and abundance of gut microbiota in AD mice complicated by UC. To conclude, this study proved the clinical phenomenon of AD susceptibility to UC, and verified the therapeutic effect of lactoferrin on 2 diseases. More importantly, we revealed the possible molecular mechanism of LF, not only does it enrich the cognitive level of lactoferrin in alleviating AD by regulating the gut microbiota through the brain gut axis from the perspective of the theory of "food nutrition promoting human health," but it also provides a practical basis for the subsequent research and development of lactoferrin and drug validation from the perspective of "drug food homology."

2.
Sci Rep ; 14(1): 7043, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528003

RESUMO

The global burden of acute and chronic wounds presents a compelling case for enhancing wound classification methods, a vital step in diagnosing and determining optimal treatments. Recognizing this need, we introduce an innovative multi-modal network based on a deep convolutional neural network for categorizing wounds into four categories: diabetic, pressure, surgical, and venous ulcers. Our multi-modal network uses wound images and their corresponding body locations for more precise classification. A unique aspect of our methodology is incorporating a body map system that facilitates accurate wound location tagging, improving upon traditional wound image classification techniques. A distinctive feature of our approach is the integration of models such as VGG16, ResNet152, and EfficientNet within a novel architecture. This architecture includes elements like spatial and channel-wise Squeeze-and-Excitation modules, Axial Attention, and an Adaptive Gated Multi-Layer Perceptron, providing a robust foundation for classification. Our multi-modal network was trained and evaluated on two distinct datasets comprising relevant images and corresponding location information. Notably, our proposed network outperformed traditional methods, reaching an accuracy range of 74.79-100% for Region of Interest (ROI) without location classifications, 73.98-100% for ROI with location classifications, and 78.10-100% for whole image classifications. This marks a significant enhancement over previously reported performance metrics in the literature. Our results indicate the potential of our multi-modal network as an effective decision-support tool for wound image classification, paving the way for its application in various clinical contexts.


Assuntos
Lesões Acidentais , Aprendizado Profundo , Neoplasias de Células Escamosas , Humanos , Benchmarking , Redes Neurais de Computação
3.
CNS Neurosci Ther ; 30(2): e14620, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334213

RESUMO

BACKGROUND: Clinically, patients with dementia are at high risk of developing enteritis, especially those with AD. This study explored the potential therapeutic benefits of bamboo leaf flavonoids (BLF) for ulcerative colitis (UC) treatment in Alzheimer's disease (AD) mouse model. METHODS: Various methods were employed, including pathological staining of brain/colon tissue, inflammatory cytokine detection in serum, and oxidative stress indicator assessment to compare ulcerative enteritis (UC) injury in normal and AD mice and determine whether AD mice were susceptible to colitis. Then, the effects of BLF on UC and AD were investigated via several unique indices further to determine whether it alleviated colitis injury and possessed beneficial properties. Moreover, four main components of BLF were utilized to treat primary colon epithelial cells and neuron cells to compare their effects in alleviating inflammation and oxidation. Furthermore, homoorientin embedded with ursolic acid was detected by HPLC and the in vitro release simulation experiments of the nanoparticles were performed. RESULTS: BLF complexes positively impacted ulcerative colitis by reducing disease activity, it also helped to reduce inflammation. Moreover, the BLF complexes decreased oxidative stress in the brain and colon tissues, indicating its potential as a neuroprotective agent. The flavonoid complexes reduced the expression levels of GFAP, Iba-1, and Aß in the brain tissue, highlighting its role in attenuating neuroinflammation and AD pathology. Additionally, the embedded homoorientin coated with ursolic acid showed stronger bioactivities when compared with the uncoated group. CONCLUSION: These results suggest that BLF complexes and its four main chemicals may be useful for treating AD- and UC-related complications, the embedded homoorientin coated with ursolic acid even demonstrated stronger bioavailability than homoorientin. Considering BLF complexes were verified to suppress the progressions of AD and UC for the first time, and the embedded homoorientin was never reported in published articles, the present study might provide a new perspective on its potential applications.


Assuntos
Doença de Alzheimer , Colite Ulcerativa , Colite , Enterite , Humanos , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Inflamação , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Environ Toxicol ; 39(5): 2583-2595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205909

RESUMO

Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.


Assuntos
Inseticidas , Pirazóis , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Inseticidas/toxicidade , Cardiotoxicidade/metabolismo , Ecossistema , Embrião não Mamífero , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo
5.
Aquat Toxicol ; 268: 106834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281391

RESUMO

Trifloxystrobin (TRI) is a methacrylate fungicide, and fluopyram (FLU) is a new pyridylethylbenzamide fungicide and nematicide. Both are often detected in water bodies and may be highly toxic to many aquatic organisms. Unfortunately, the aquatic biological risks of single FLU or a mixture of trifloxystrobin and fluopyram have not been reported. In this study, zebrafish was selected as the test organism to investigate the combined toxicity of trifloxystrobin and fluopyram to zebrafish. After zebrafish embryos exposed to three pesticide solutions, Alcian-blue staining, Alizarin-red staining and quantitative PCR (qPCR) were performed. The results indicated that 96h-LC50 of TRI was 0.159 mg·L-1 to zebrafish embryo, which was highly toxic. The 96h-LC50 of FLU to zebrafish embryos was 4.375 mg·L-1, being moderately toxic. The joint toxicity to zebrafish embryos(FLU at 96h-LC50 and TRI at 96h-LC50 in a 1:1 weight ratio to form a series of concentration treatment groups) was antagonistic. Both trifloxystrobin and fluopyram also inhibited the skeletal development of zebrafish and showed to be antagonistic. The results of qPCR indicated upregulations of different genes upon three different treatments. TRI mainly induced Smads up-expression, which may affect the BMP-smads pathway. FLU mainly induced an up-expression of extracellular BMP ligands and type I receptor (Bmpr-1a), which may affect the BMP ligand receptor pathway. The 1:1 mixture (weight ratio) of trifloxystrobin and fluopyram induced a reduction of the genes of extracellular BMP ligand (Smads) and type I receptor (Bmpr1ba), which may down-regulate BMP signaling and thus attenuating cartilage hyperproliferation, hypertrophy and mineralization. The results warren an interest in further studying the effect of the two fungicides in a mixture on zebrafish.


Assuntos
Acetatos , Benzamidas , Fungicidas Industriais , Iminas , Piridinas , Estrobilurinas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Ligantes , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Fungicidas Industriais/toxicidade , Desenvolvimento Ósseo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA